An Uncertainty-Aware Transfer Learning-Based Framework for COVID-19 Diagnosis
The early and reliable detection of COVID-19 infected patients is essential to prevent and limit its outbreak. The PCR tests for COVID-19 detection are not available in many countries, and also, there are genuine concerns about their reliability and performance. Motivated by these shortcomings, this...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2021-04, Vol.32 (4), p.1408-1417 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1417 |
---|---|
container_issue | 4 |
container_start_page | 1408 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 32 |
creator | Shamsi, Afshar Asgharnezhad, Hamzeh Jokandan, Shirin Shamsi Khosravi, Abbas Kebria, Parham M. Nahavandi, Darius Nahavandi, Saeid Srinivasan, Dipti |
description | The early and reliable detection of COVID-19 infected patients is essential to prevent and limit its outbreak. The PCR tests for COVID-19 detection are not available in many countries, and also, there are genuine concerns about their reliability and performance. Motivated by these shortcomings, this article proposes a deep uncertainty-aware transfer learning framework for COVID-19 detection using medical images. Four popular convolutional neural networks (CNNs), including VGG16, ResNet50, DenseNet121, and InceptionResNetV2, are first applied to extract deep features from chest X-ray and computed tomography (CT) images. Extracted features are then processed by different machine learning and statistical modeling techniques to identify COVID-19 cases. We also calculate and report the epistemic uncertainty of classification results to identify regions where the trained models are not confident about their decisions (out of distribution problem). Comprehensive simulation results for X-ray and CT image data sets indicate that linear support vector machine and neural network models achieve the best results as measured by accuracy, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC). Also, it is found that predictive uncertainty estimates are much higher for CT images compared to X-ray images. |
doi_str_mv | 10.1109/TNNLS.2021.3054306 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9353390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9353390</ieee_id><sourcerecordid>2509290577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-86296f51d9a7cad35b6dae452159efa9d36d871b6c143db3ac3d0350e5aea1ed3</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVpSUKSP5BCWeill3X0sdKuLgXH-QQnOcQJvYnxatZVakuOtG7Iv49Su6apQEgwz7zM8BByxOiAMaqPJzc347sBp5wNBJWVoOoD2eNM8ZKLpvm4_dc_dslhSo80H0WlqvQO2RVC1jlE7pHroS_ufYuxB-f7l3L4DBGLSQSfOozFGCF652flCSS0xXmEBT6H-KvoQixGtw9XpyXTxamDmQ_JpQPyqYN5wsPNu0_uz88mo8tyfHtxNRqOy1Yy1ZeN4lp1klkNdQtWyKmygJXkTGrsQFuhbFOzqWpZJexUQCssFZKiBASGVuyT7-vc5Wq6QNui7yPMzTK6BcQXE8CZ9xXvfppZ-G0aWVW64jng2yYghqcVpt4sXGpxPgePYZUMrxqdb61pRr_-hz6GVfR5PcMl1VxTWdeZ4muqjSGliN12GEbNmzDzR5h5E2Y2wnLTl3_X2Lb81ZOBz2vAIeK2rIUUIk_2Cvhema4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509290577</pqid></control><display><type>article</type><title>An Uncertainty-Aware Transfer Learning-Based Framework for COVID-19 Diagnosis</title><source>IEEE Electronic Library (IEL)</source><creator>Shamsi, Afshar ; Asgharnezhad, Hamzeh ; Jokandan, Shirin Shamsi ; Khosravi, Abbas ; Kebria, Parham M. ; Nahavandi, Darius ; Nahavandi, Saeid ; Srinivasan, Dipti</creator><creatorcontrib>Shamsi, Afshar ; Asgharnezhad, Hamzeh ; Jokandan, Shirin Shamsi ; Khosravi, Abbas ; Kebria, Parham M. ; Nahavandi, Darius ; Nahavandi, Saeid ; Srinivasan, Dipti</creatorcontrib><description>The early and reliable detection of COVID-19 infected patients is essential to prevent and limit its outbreak. The PCR tests for COVID-19 detection are not available in many countries, and also, there are genuine concerns about their reliability and performance. Motivated by these shortcomings, this article proposes a deep uncertainty-aware transfer learning framework for COVID-19 detection using medical images. Four popular convolutional neural networks (CNNs), including VGG16, ResNet50, DenseNet121, and InceptionResNetV2, are first applied to extract deep features from chest X-ray and computed tomography (CT) images. Extracted features are then processed by different machine learning and statistical modeling techniques to identify COVID-19 cases. We also calculate and report the epistemic uncertainty of classification results to identify regions where the trained models are not confident about their decisions (out of distribution problem). Comprehensive simulation results for X-ray and CT image data sets indicate that linear support vector machine and neural network models achieve the best results as measured by accuracy, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC). Also, it is found that predictive uncertainty estimates are much higher for CT images compared to X-ray images.</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3054306</identifier><identifier>PMID: 33571095</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Classification ; Computed tomography ; Computer Simulation ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 - diagnostic imaging ; COVID-19 Testing - methods ; Data models ; Deep Learning ; Feature extraction ; Humans ; Image Interpretation, Computer-Assisted - methods ; Learning algorithms ; Machine Learning ; Mathematical models ; Medical imaging ; Neural networks ; Neural Networks, Computer ; Radiography, Thoracic ; Reproducibility of Results ; ROC Curve ; Sensitivity and Specificity ; Statistical analysis ; Statistical models ; Support Vector Machine ; Support vector machines ; Thorax - diagnostic imaging ; Tomography, X-Ray Computed ; Training ; Transfer learning ; Transfer, Psychology ; Uncertainty ; uncertainty quantification ; X-ray imaging</subject><ispartof>IEEE transaction on neural networks and learning systems, 2021-04, Vol.32 (4), p.1408-1417</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>IEEE 2020. IEEE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-86296f51d9a7cad35b6dae452159efa9d36d871b6c143db3ac3d0350e5aea1ed3</citedby><cites>FETCH-LOGICAL-c516t-86296f51d9a7cad35b6dae452159efa9d36d871b6c143db3ac3d0350e5aea1ed3</cites><orcidid>0000-0002-0360-5270 ; 0000-0002-1122-2149 ; 0000-0001-7049-928X ; 0000-0002-2672-4811 ; 0000-0001-6927-0744 ; 0000-0003-4877-3478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9353390$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,778,782,794,883,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9353390$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33571095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shamsi, Afshar</creatorcontrib><creatorcontrib>Asgharnezhad, Hamzeh</creatorcontrib><creatorcontrib>Jokandan, Shirin Shamsi</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Kebria, Parham M.</creatorcontrib><creatorcontrib>Nahavandi, Darius</creatorcontrib><creatorcontrib>Nahavandi, Saeid</creatorcontrib><creatorcontrib>Srinivasan, Dipti</creatorcontrib><title>An Uncertainty-Aware Transfer Learning-Based Framework for COVID-19 Diagnosis</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>The early and reliable detection of COVID-19 infected patients is essential to prevent and limit its outbreak. The PCR tests for COVID-19 detection are not available in many countries, and also, there are genuine concerns about their reliability and performance. Motivated by these shortcomings, this article proposes a deep uncertainty-aware transfer learning framework for COVID-19 detection using medical images. Four popular convolutional neural networks (CNNs), including VGG16, ResNet50, DenseNet121, and InceptionResNetV2, are first applied to extract deep features from chest X-ray and computed tomography (CT) images. Extracted features are then processed by different machine learning and statistical modeling techniques to identify COVID-19 cases. We also calculate and report the epistemic uncertainty of classification results to identify regions where the trained models are not confident about their decisions (out of distribution problem). Comprehensive simulation results for X-ray and CT image data sets indicate that linear support vector machine and neural network models achieve the best results as measured by accuracy, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC). Also, it is found that predictive uncertainty estimates are much higher for CT images compared to X-ray images.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computed tomography</subject><subject>Computer Simulation</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - diagnostic imaging</subject><subject>COVID-19 Testing - methods</subject><subject>Data models</subject><subject>Deep Learning</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Radiography, Thoracic</subject><subject>Reproducibility of Results</subject><subject>ROC Curve</subject><subject>Sensitivity and Specificity</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Thorax - diagnostic imaging</subject><subject>Tomography, X-Ray Computed</subject><subject>Training</subject><subject>Transfer learning</subject><subject>Transfer, Psychology</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><subject>X-ray imaging</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1rGzEQhkVpSUKSP5BCWeill3X0sdKuLgXH-QQnOcQJvYnxatZVakuOtG7Iv49Su6apQEgwz7zM8BByxOiAMaqPJzc347sBp5wNBJWVoOoD2eNM8ZKLpvm4_dc_dslhSo80H0WlqvQO2RVC1jlE7pHroS_ufYuxB-f7l3L4DBGLSQSfOozFGCF652flCSS0xXmEBT6H-KvoQixGtw9XpyXTxamDmQ_JpQPyqYN5wsPNu0_uz88mo8tyfHtxNRqOy1Yy1ZeN4lp1klkNdQtWyKmygJXkTGrsQFuhbFOzqWpZJexUQCssFZKiBASGVuyT7-vc5Wq6QNui7yPMzTK6BcQXE8CZ9xXvfppZ-G0aWVW64jng2yYghqcVpt4sXGpxPgePYZUMrxqdb61pRr_-hz6GVfR5PcMl1VxTWdeZ4muqjSGliN12GEbNmzDzR5h5E2Y2wnLTl3_X2Lb81ZOBz2vAIeK2rIUUIk_2Cvhema4</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Shamsi, Afshar</creator><creator>Asgharnezhad, Hamzeh</creator><creator>Jokandan, Shirin Shamsi</creator><creator>Khosravi, Abbas</creator><creator>Kebria, Parham M.</creator><creator>Nahavandi, Darius</creator><creator>Nahavandi, Saeid</creator><creator>Srinivasan, Dipti</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0360-5270</orcidid><orcidid>https://orcid.org/0000-0002-1122-2149</orcidid><orcidid>https://orcid.org/0000-0001-7049-928X</orcidid><orcidid>https://orcid.org/0000-0002-2672-4811</orcidid><orcidid>https://orcid.org/0000-0001-6927-0744</orcidid><orcidid>https://orcid.org/0000-0003-4877-3478</orcidid></search><sort><creationdate>20210401</creationdate><title>An Uncertainty-Aware Transfer Learning-Based Framework for COVID-19 Diagnosis</title><author>Shamsi, Afshar ; Asgharnezhad, Hamzeh ; Jokandan, Shirin Shamsi ; Khosravi, Abbas ; Kebria, Parham M. ; Nahavandi, Darius ; Nahavandi, Saeid ; Srinivasan, Dipti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-86296f51d9a7cad35b6dae452159efa9d36d871b6c143db3ac3d0350e5aea1ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computed tomography</topic><topic>Computer Simulation</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - diagnostic imaging</topic><topic>COVID-19 Testing - methods</topic><topic>Data models</topic><topic>Deep Learning</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Radiography, Thoracic</topic><topic>Reproducibility of Results</topic><topic>ROC Curve</topic><topic>Sensitivity and Specificity</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Thorax - diagnostic imaging</topic><topic>Tomography, X-Ray Computed</topic><topic>Training</topic><topic>Transfer learning</topic><topic>Transfer, Psychology</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Shamsi, Afshar</creatorcontrib><creatorcontrib>Asgharnezhad, Hamzeh</creatorcontrib><creatorcontrib>Jokandan, Shirin Shamsi</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Kebria, Parham M.</creatorcontrib><creatorcontrib>Nahavandi, Darius</creatorcontrib><creatorcontrib>Nahavandi, Saeid</creatorcontrib><creatorcontrib>Srinivasan, Dipti</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shamsi, Afshar</au><au>Asgharnezhad, Hamzeh</au><au>Jokandan, Shirin Shamsi</au><au>Khosravi, Abbas</au><au>Kebria, Parham M.</au><au>Nahavandi, Darius</au><au>Nahavandi, Saeid</au><au>Srinivasan, Dipti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Uncertainty-Aware Transfer Learning-Based Framework for COVID-19 Diagnosis</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>32</volume><issue>4</issue><spage>1408</spage><epage>1417</epage><pages>1408-1417</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>The early and reliable detection of COVID-19 infected patients is essential to prevent and limit its outbreak. The PCR tests for COVID-19 detection are not available in many countries, and also, there are genuine concerns about their reliability and performance. Motivated by these shortcomings, this article proposes a deep uncertainty-aware transfer learning framework for COVID-19 detection using medical images. Four popular convolutional neural networks (CNNs), including VGG16, ResNet50, DenseNet121, and InceptionResNetV2, are first applied to extract deep features from chest X-ray and computed tomography (CT) images. Extracted features are then processed by different machine learning and statistical modeling techniques to identify COVID-19 cases. We also calculate and report the epistemic uncertainty of classification results to identify regions where the trained models are not confident about their decisions (out of distribution problem). Comprehensive simulation results for X-ray and CT image data sets indicate that linear support vector machine and neural network models achieve the best results as measured by accuracy, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC). Also, it is found that predictive uncertainty estimates are much higher for CT images compared to X-ray images.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33571095</pmid><doi>10.1109/TNNLS.2021.3054306</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0360-5270</orcidid><orcidid>https://orcid.org/0000-0002-1122-2149</orcidid><orcidid>https://orcid.org/0000-0001-7049-928X</orcidid><orcidid>https://orcid.org/0000-0002-2672-4811</orcidid><orcidid>https://orcid.org/0000-0001-6927-0744</orcidid><orcidid>https://orcid.org/0000-0003-4877-3478</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2021-04, Vol.32 (4), p.1408-1417 |
issn | 2162-237X 2162-2388 2162-2388 |
language | eng |
recordid | cdi_ieee_primary_9353390 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Classification Computed tomography Computer Simulation Coronaviruses COVID-19 COVID-19 - diagnosis COVID-19 - diagnostic imaging COVID-19 Testing - methods Data models Deep Learning Feature extraction Humans Image Interpretation, Computer-Assisted - methods Learning algorithms Machine Learning Mathematical models Medical imaging Neural networks Neural Networks, Computer Radiography, Thoracic Reproducibility of Results ROC Curve Sensitivity and Specificity Statistical analysis Statistical models Support Vector Machine Support vector machines Thorax - diagnostic imaging Tomography, X-Ray Computed Training Transfer learning Transfer, Psychology Uncertainty uncertainty quantification X-ray imaging |
title | An Uncertainty-Aware Transfer Learning-Based Framework for COVID-19 Diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Uncertainty-Aware%20Transfer%20Learning-Based%20Framework%20for%20COVID-19%20Diagnosis&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Shamsi,%20Afshar&rft.date=2021-04-01&rft.volume=32&rft.issue=4&rft.spage=1408&rft.epage=1417&rft.pages=1408-1417&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3054306&rft_dat=%3Cproquest_RIE%3E2509290577%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509290577&rft_id=info:pmid/33571095&rft_ieee_id=9353390&rfr_iscdi=true |