DGattGAN: Cooperative Up-Sampling Based Dual Generator Attentional GAN on Text-to-Image Synthesis

Text-to-image synthesis task aims at generating images consistent with input text descriptions and is well developed by the Generative Adversarial Network (GAN). Although GAN based image generation approaches have achieved promising results, synthesizing quality is sometimes unsatisfied due to discu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.29584-29598
Hauptverfasser: Zhang, Han, Zhu, Hongqing, Yang, Suyi, Li, Wenhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29598
container_issue
container_start_page 29584
container_title IEEE access
container_volume 9
creator Zhang, Han
Zhu, Hongqing
Yang, Suyi
Li, Wenhao
description Text-to-image synthesis task aims at generating images consistent with input text descriptions and is well developed by the Generative Adversarial Network (GAN). Although GAN based image generation approaches have achieved promising results, synthesizing quality is sometimes unsatisfied due to discursive generation of background and object. In this article, we propose a cooperative up-sampling based Dual Generator attentional GAN (DGattGAN) to generate high-quality images from text description. To achieve this, two generators with individual generation purpose are established to decouple object and background generation. In particular, we introduce a cooperative up-sampling mechanism to build cooperation between object and background generators during training. This strategy is potentially very useful as any dual generator architecture in GAN models can benefit from this mechanism. Furthermore, we propose an asymmetric information feeding scheme to distinguish two synthesis tasks, such that each generator only synthesizes based on semantic information they accept. Taking advantage of effective dual generator, the attention mechanism we incorporated on object generator could devote to fine-grained details generation on actual targeted objects. Experiments on Caltech-UCSD Bird (CUB) and Oxford-102 datasets suggest that generated images by the proposed model are more realistic and consistent with input text, and DGattGAN is competent compared to state-of-the-art methods according to Inception Score (IS) and R-precision metrics. Our codes are available at: https://github.com/ecfish/DGattGAN .
doi_str_mv 10.1109/ACCESS.2021.3058674
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9352788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9352788</ieee_id><doaj_id>oai_doaj_org_article_72f934762d4448c6a4947de92bce691f</doaj_id><sourcerecordid>2493599350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a580bbedae3e46a06cdbcc5490e43a0334e03ae9cb08959b7f27fb5bcc81d8e23</originalsourceid><addsrcrecordid>eNpNUcFKxDAQLaKgqF_gJeC5a5qkbeKtVl0XRA-r5zBNp2uX3aYmWdG_N2tFHBhmeLz3huElyUVGZ1lG1VVV13fL5YxRls04zWVRioPkhGWFSnnOi8N_-3Fy7v2axpIRysuTBG7nEMK8eromtbUjOgj9B5LXMV3Cdtz0w4rcgMeW3O5gQ-Y47BnWkSoEHEJvhz1aPRE7kBf8DGmw6WILKyTLryG8oe_9WXLUwcbj-e88TV7v717qh_Txeb6oq8fUCCpDCrmkTYMtIEdRAC1M2xiTC0VRcKCcC6QcUJmGSpWrpuxY2TV55Mislcj4abKYfFsLaz26fgvuS1vo9Q9g3UqDC73ZoC5Zp7goC9YKIaQpQChRtqhYY7BQWRe9Liev0dn3Hfqg13bn4q9eM6F4rmLTyOITyzjrvcPu72pG9T4aPUWj99Ho32ii6mJS9Yj4p4iGrJSSfwOohomO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493599350</pqid></control><display><type>article</type><title>DGattGAN: Cooperative Up-Sampling Based Dual Generator Attentional GAN on Text-to-Image Synthesis</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Han ; Zhu, Hongqing ; Yang, Suyi ; Li, Wenhao</creator><creatorcontrib>Zhang, Han ; Zhu, Hongqing ; Yang, Suyi ; Li, Wenhao</creatorcontrib><description>Text-to-image synthesis task aims at generating images consistent with input text descriptions and is well developed by the Generative Adversarial Network (GAN). Although GAN based image generation approaches have achieved promising results, synthesizing quality is sometimes unsatisfied due to discursive generation of background and object. In this article, we propose a cooperative up-sampling based Dual Generator attentional GAN (DGattGAN) to generate high-quality images from text description. To achieve this, two generators with individual generation purpose are established to decouple object and background generation. In particular, we introduce a cooperative up-sampling mechanism to build cooperation between object and background generators during training. This strategy is potentially very useful as any dual generator architecture in GAN models can benefit from this mechanism. Furthermore, we propose an asymmetric information feeding scheme to distinguish two synthesis tasks, such that each generator only synthesizes based on semantic information they accept. Taking advantage of effective dual generator, the attention mechanism we incorporated on object generator could devote to fine-grained details generation on actual targeted objects. Experiments on Caltech-UCSD Bird (CUB) and Oxford-102 datasets suggest that generated images by the proposed model are more realistic and consistent with input text, and DGattGAN is competent compared to state-of-the-art methods according to Inception Score (IS) and R-precision metrics. Our codes are available at: https://github.com/ecfish/DGattGAN .</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3058674</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Asymmetric information feeding ; cooperative up-sampling ; dual generator ; Gallium nitride ; Generative adversarial networks ; Generators ; Image processing ; Image quality ; Image resolution ; Image synthesis ; Sampling ; Synthesis ; Task analysis ; text-to-image synthesis ; Visualization</subject><ispartof>IEEE access, 2021, Vol.9, p.29584-29598</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a580bbedae3e46a06cdbcc5490e43a0334e03ae9cb08959b7f27fb5bcc81d8e23</citedby><cites>FETCH-LOGICAL-c408t-a580bbedae3e46a06cdbcc5490e43a0334e03ae9cb08959b7f27fb5bcc81d8e23</cites><orcidid>0000-0002-2122-7066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9352788$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Zhu, Hongqing</creatorcontrib><creatorcontrib>Yang, Suyi</creatorcontrib><creatorcontrib>Li, Wenhao</creatorcontrib><title>DGattGAN: Cooperative Up-Sampling Based Dual Generator Attentional GAN on Text-to-Image Synthesis</title><title>IEEE access</title><addtitle>Access</addtitle><description>Text-to-image synthesis task aims at generating images consistent with input text descriptions and is well developed by the Generative Adversarial Network (GAN). Although GAN based image generation approaches have achieved promising results, synthesizing quality is sometimes unsatisfied due to discursive generation of background and object. In this article, we propose a cooperative up-sampling based Dual Generator attentional GAN (DGattGAN) to generate high-quality images from text description. To achieve this, two generators with individual generation purpose are established to decouple object and background generation. In particular, we introduce a cooperative up-sampling mechanism to build cooperation between object and background generators during training. This strategy is potentially very useful as any dual generator architecture in GAN models can benefit from this mechanism. Furthermore, we propose an asymmetric information feeding scheme to distinguish two synthesis tasks, such that each generator only synthesizes based on semantic information they accept. Taking advantage of effective dual generator, the attention mechanism we incorporated on object generator could devote to fine-grained details generation on actual targeted objects. Experiments on Caltech-UCSD Bird (CUB) and Oxford-102 datasets suggest that generated images by the proposed model are more realistic and consistent with input text, and DGattGAN is competent compared to state-of-the-art methods according to Inception Score (IS) and R-precision metrics. Our codes are available at: https://github.com/ecfish/DGattGAN .</description><subject>Asymmetric information feeding</subject><subject>cooperative up-sampling</subject><subject>dual generator</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>Image synthesis</subject><subject>Sampling</subject><subject>Synthesis</subject><subject>Task analysis</subject><subject>text-to-image synthesis</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFKxDAQLaKgqF_gJeC5a5qkbeKtVl0XRA-r5zBNp2uX3aYmWdG_N2tFHBhmeLz3huElyUVGZ1lG1VVV13fL5YxRls04zWVRioPkhGWFSnnOi8N_-3Fy7v2axpIRysuTBG7nEMK8eromtbUjOgj9B5LXMV3Cdtz0w4rcgMeW3O5gQ-Y47BnWkSoEHEJvhz1aPRE7kBf8DGmw6WILKyTLryG8oe_9WXLUwcbj-e88TV7v717qh_Txeb6oq8fUCCpDCrmkTYMtIEdRAC1M2xiTC0VRcKCcC6QcUJmGSpWrpuxY2TV55Mislcj4abKYfFsLaz26fgvuS1vo9Q9g3UqDC73ZoC5Zp7goC9YKIaQpQChRtqhYY7BQWRe9Liev0dn3Hfqg13bn4q9eM6F4rmLTyOITyzjrvcPu72pG9T4aPUWj99Ho32ii6mJS9Yj4p4iGrJSSfwOohomO</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhang, Han</creator><creator>Zhu, Hongqing</creator><creator>Yang, Suyi</creator><creator>Li, Wenhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2122-7066</orcidid></search><sort><creationdate>2021</creationdate><title>DGattGAN: Cooperative Up-Sampling Based Dual Generator Attentional GAN on Text-to-Image Synthesis</title><author>Zhang, Han ; Zhu, Hongqing ; Yang, Suyi ; Li, Wenhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a580bbedae3e46a06cdbcc5490e43a0334e03ae9cb08959b7f27fb5bcc81d8e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetric information feeding</topic><topic>cooperative up-sampling</topic><topic>dual generator</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>Image synthesis</topic><topic>Sampling</topic><topic>Synthesis</topic><topic>Task analysis</topic><topic>text-to-image synthesis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Zhu, Hongqing</creatorcontrib><creatorcontrib>Yang, Suyi</creatorcontrib><creatorcontrib>Li, Wenhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Han</au><au>Zhu, Hongqing</au><au>Yang, Suyi</au><au>Li, Wenhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DGattGAN: Cooperative Up-Sampling Based Dual Generator Attentional GAN on Text-to-Image Synthesis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>29584</spage><epage>29598</epage><pages>29584-29598</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Text-to-image synthesis task aims at generating images consistent with input text descriptions and is well developed by the Generative Adversarial Network (GAN). Although GAN based image generation approaches have achieved promising results, synthesizing quality is sometimes unsatisfied due to discursive generation of background and object. In this article, we propose a cooperative up-sampling based Dual Generator attentional GAN (DGattGAN) to generate high-quality images from text description. To achieve this, two generators with individual generation purpose are established to decouple object and background generation. In particular, we introduce a cooperative up-sampling mechanism to build cooperation between object and background generators during training. This strategy is potentially very useful as any dual generator architecture in GAN models can benefit from this mechanism. Furthermore, we propose an asymmetric information feeding scheme to distinguish two synthesis tasks, such that each generator only synthesizes based on semantic information they accept. Taking advantage of effective dual generator, the attention mechanism we incorporated on object generator could devote to fine-grained details generation on actual targeted objects. Experiments on Caltech-UCSD Bird (CUB) and Oxford-102 datasets suggest that generated images by the proposed model are more realistic and consistent with input text, and DGattGAN is competent compared to state-of-the-art methods according to Inception Score (IS) and R-precision metrics. Our codes are available at: https://github.com/ecfish/DGattGAN .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3058674</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2122-7066</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.29584-29598
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9352788
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Asymmetric information feeding
cooperative up-sampling
dual generator
Gallium nitride
Generative adversarial networks
Generators
Image processing
Image quality
Image resolution
Image synthesis
Sampling
Synthesis
Task analysis
text-to-image synthesis
Visualization
title DGattGAN: Cooperative Up-Sampling Based Dual Generator Attentional GAN on Text-to-Image Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DGattGAN:%20Cooperative%20Up-Sampling%20Based%20Dual%20Generator%20Attentional%20GAN%20on%20Text-to-Image%20Synthesis&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Han&rft.date=2021&rft.volume=9&rft.spage=29584&rft.epage=29598&rft.pages=29584-29598&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3058674&rft_dat=%3Cproquest_ieee_%3E2493599350%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493599350&rft_id=info:pmid/&rft_ieee_id=9352788&rft_doaj_id=oai_doaj_org_article_72f934762d4448c6a4947de92bce691f&rfr_iscdi=true