A Resource-Constrained and Privacy-Preserving Edge-Computing-Enabled Clinical Decision System: A Federated Reinforcement Learning Approach
Internet-of-Things-enabled E-health system, which could monitor and collect the personal health information (PHI), has gradually transformed the clinical treatment to a more personalized way with in-home monitoring smart devices. Then, with the collected PHI, clinical decision support systems (CDSSs...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2021-06, Vol.8 (11), p.9122-9138 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9138 |
---|---|
container_issue | 11 |
container_start_page | 9122 |
container_title | IEEE internet of things journal |
container_volume | 8 |
creator | Xue, Zeyue Zhou, Pan Xu, Zichuan Wang, Xiumin Xie, Yulai Ding, Xiaofeng Wen, Shiping |
description | Internet-of-Things-enabled E-health system, which could monitor and collect the personal health information (PHI), has gradually transformed the clinical treatment to a more personalized way with in-home monitoring smart devices. Then, with the collected PHI, clinical decision support systems (CDSSs), which are based on data mining techniques and historical electronic medical records (EMRs) to help clinicians make proper treatment decisions, have attracted considerable attention. To address issues, such as network congestion and low rate of responsiveness for traditional methods when implementing CDSSs, we integrate the technologies mobile-edge computing (MEC) and software-defined networking for exploiting the computation resources and storage capacities among edge nodes (ENs) (i.e., MEC servers) in our model. Based on this integrated system, each edge node will deploy a double deep Q -network (DDQN) to obtain a stable and sequential clinical treatment policy. It is enabled by a novel fully decentralized federated framework (FDFF) for aggregating models of DDQN and extracting the knowledge from EMRs across all ENs. Furthermore, we discuss the convergence of FDFF in resource-constrained environments. However, since most EMRs are faced with stringent privacy concerns, we adopt two additively homomorphic encryption schemes to prevent leakage of EMRs' privacy during the training process of FDFF. Finally, we measure the time cost of our additively homomorphic encryption schemes and validate DDQN with experiments on large data sets based on FDFF, which shows promising performance on clinician treatment. |
doi_str_mv | 10.1109/JIOT.2021.3057653 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9349772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9349772</ieee_id><sourcerecordid>2530110428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3fa1211c042782f139ec440f5e172432234cd4637280bd775b13fde52ec96c043</originalsourceid><addsrcrecordid>eNpNkNFqwjAUhsvYYOJ8gLGbwK7rkpO0sbsTp5tDUJy7LjE9dZGauqQKvsKeeinK2NXJge8_P_mi6J7RPmM0e3qfzld9oMD6nCYyTfhV1AEOMhZpCtf_3rdRz_stpTTEEpalnehnSJbo64PTGI9q6xunjMWCKFuQhTNHpU_xwqFHdzR2Q8bFpuV2-0MT1nhs1boK9Kgy1mhVkRfUxpvako-Tb3D3TIZkggU61QRqicaWdWjaoW3IDJWz7c3hfu9qpb_uoptSVR57l9mNPifj1egtns1fp6PhLNaQ8SbmpWLAmKYC5ABKxjPUQtAyQSZBcAAudCFSLmFA14WUyZrxssAEUGdpSPFu9Hi-G2q_D-ibfBv-b0NlDglv1QgYBIqdKe1q7x2W-d6ZnXKnnNG8tZ631vPWen6xHjIP54xBxD8-4yKTEvgv3A5-Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530110428</pqid></control><display><type>article</type><title>A Resource-Constrained and Privacy-Preserving Edge-Computing-Enabled Clinical Decision System: A Federated Reinforcement Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Xue, Zeyue ; Zhou, Pan ; Xu, Zichuan ; Wang, Xiumin ; Xie, Yulai ; Ding, Xiaofeng ; Wen, Shiping</creator><creatorcontrib>Xue, Zeyue ; Zhou, Pan ; Xu, Zichuan ; Wang, Xiumin ; Xie, Yulai ; Ding, Xiaofeng ; Wen, Shiping</creatorcontrib><description>Internet-of-Things-enabled E-health system, which could monitor and collect the personal health information (PHI), has gradually transformed the clinical treatment to a more personalized way with in-home monitoring smart devices. Then, with the collected PHI, clinical decision support systems (CDSSs), which are based on data mining techniques and historical electronic medical records (EMRs) to help clinicians make proper treatment decisions, have attracted considerable attention. To address issues, such as network congestion and low rate of responsiveness for traditional methods when implementing CDSSs, we integrate the technologies mobile-edge computing (MEC) and software-defined networking for exploiting the computation resources and storage capacities among edge nodes (ENs) (i.e., MEC servers) in our model. Based on this integrated system, each edge node will deploy a double deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network (DDQN) to obtain a stable and sequential clinical treatment policy. It is enabled by a novel fully decentralized federated framework (FDFF) for aggregating models of DDQN and extracting the knowledge from EMRs across all ENs. Furthermore, we discuss the convergence of FDFF in resource-constrained environments. However, since most EMRs are faced with stringent privacy concerns, we adopt two additively homomorphic encryption schemes to prevent leakage of EMRs' privacy during the training process of FDFF. Finally, we measure the time cost of our additively homomorphic encryption schemes and validate DDQN with experiments on large data sets based on FDFF, which shows promising performance on clinician treatment.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3057653</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Additively homomorphic encryption ; clinical decision support system ; Collaborative work ; Data mining ; Decision support systems ; Edge computing ; Electronic devices ; Electronic health records ; Encryption ; federated deep reinforcement learning (RL) ; Health services ; Internet of Things ; Internet-of-Things-enabled E-health (IoT-Ehealth) ; Mobile computing ; mobile-edge computing (MEC) ; Monitoring ; Privacy ; Reinforcement learning ; Servers ; Software-defined networking</subject><ispartof>IEEE internet of things journal, 2021-06, Vol.8 (11), p.9122-9138</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3fa1211c042782f139ec440f5e172432234cd4637280bd775b13fde52ec96c043</citedby><cites>FETCH-LOGICAL-c293t-3fa1211c042782f139ec440f5e172432234cd4637280bd775b13fde52ec96c043</cites><orcidid>0000-0002-5048-0319 ; 0000-0002-8629-4622 ; 0000-0001-5438-1468 ; 0000-0001-5757-4396 ; 0000-0001-5054-8515 ; 0000-0002-3772-290X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9349772$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9349772$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue, Zeyue</creatorcontrib><creatorcontrib>Zhou, Pan</creatorcontrib><creatorcontrib>Xu, Zichuan</creatorcontrib><creatorcontrib>Wang, Xiumin</creatorcontrib><creatorcontrib>Xie, Yulai</creatorcontrib><creatorcontrib>Ding, Xiaofeng</creatorcontrib><creatorcontrib>Wen, Shiping</creatorcontrib><title>A Resource-Constrained and Privacy-Preserving Edge-Computing-Enabled Clinical Decision System: A Federated Reinforcement Learning Approach</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Internet-of-Things-enabled E-health system, which could monitor and collect the personal health information (PHI), has gradually transformed the clinical treatment to a more personalized way with in-home monitoring smart devices. Then, with the collected PHI, clinical decision support systems (CDSSs), which are based on data mining techniques and historical electronic medical records (EMRs) to help clinicians make proper treatment decisions, have attracted considerable attention. To address issues, such as network congestion and low rate of responsiveness for traditional methods when implementing CDSSs, we integrate the technologies mobile-edge computing (MEC) and software-defined networking for exploiting the computation resources and storage capacities among edge nodes (ENs) (i.e., MEC servers) in our model. Based on this integrated system, each edge node will deploy a double deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network (DDQN) to obtain a stable and sequential clinical treatment policy. It is enabled by a novel fully decentralized federated framework (FDFF) for aggregating models of DDQN and extracting the knowledge from EMRs across all ENs. Furthermore, we discuss the convergence of FDFF in resource-constrained environments. However, since most EMRs are faced with stringent privacy concerns, we adopt two additively homomorphic encryption schemes to prevent leakage of EMRs' privacy during the training process of FDFF. Finally, we measure the time cost of our additively homomorphic encryption schemes and validate DDQN with experiments on large data sets based on FDFF, which shows promising performance on clinician treatment.</description><subject>Additively homomorphic encryption</subject><subject>clinical decision support system</subject><subject>Collaborative work</subject><subject>Data mining</subject><subject>Decision support systems</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Electronic health records</subject><subject>Encryption</subject><subject>federated deep reinforcement learning (RL)</subject><subject>Health services</subject><subject>Internet of Things</subject><subject>Internet-of-Things-enabled E-health (IoT-Ehealth)</subject><subject>Mobile computing</subject><subject>mobile-edge computing (MEC)</subject><subject>Monitoring</subject><subject>Privacy</subject><subject>Reinforcement learning</subject><subject>Servers</subject><subject>Software-defined networking</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFqwjAUhsvYYOJ8gLGbwK7rkpO0sbsTp5tDUJy7LjE9dZGauqQKvsKeeinK2NXJge8_P_mi6J7RPmM0e3qfzld9oMD6nCYyTfhV1AEOMhZpCtf_3rdRz_stpTTEEpalnehnSJbo64PTGI9q6xunjMWCKFuQhTNHpU_xwqFHdzR2Q8bFpuV2-0MT1nhs1boK9Kgy1mhVkRfUxpvako-Tb3D3TIZkggU61QRqicaWdWjaoW3IDJWz7c3hfu9qpb_uoptSVR57l9mNPifj1egtns1fp6PhLNaQ8SbmpWLAmKYC5ABKxjPUQtAyQSZBcAAudCFSLmFA14WUyZrxssAEUGdpSPFu9Hi-G2q_D-ibfBv-b0NlDglv1QgYBIqdKe1q7x2W-d6ZnXKnnNG8tZ631vPWen6xHjIP54xBxD8-4yKTEvgv3A5-Gw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Xue, Zeyue</creator><creator>Zhou, Pan</creator><creator>Xu, Zichuan</creator><creator>Wang, Xiumin</creator><creator>Xie, Yulai</creator><creator>Ding, Xiaofeng</creator><creator>Wen, Shiping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5048-0319</orcidid><orcidid>https://orcid.org/0000-0002-8629-4622</orcidid><orcidid>https://orcid.org/0000-0001-5438-1468</orcidid><orcidid>https://orcid.org/0000-0001-5757-4396</orcidid><orcidid>https://orcid.org/0000-0001-5054-8515</orcidid><orcidid>https://orcid.org/0000-0002-3772-290X</orcidid></search><sort><creationdate>20210601</creationdate><title>A Resource-Constrained and Privacy-Preserving Edge-Computing-Enabled Clinical Decision System: A Federated Reinforcement Learning Approach</title><author>Xue, Zeyue ; Zhou, Pan ; Xu, Zichuan ; Wang, Xiumin ; Xie, Yulai ; Ding, Xiaofeng ; Wen, Shiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3fa1211c042782f139ec440f5e172432234cd4637280bd775b13fde52ec96c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additively homomorphic encryption</topic><topic>clinical decision support system</topic><topic>Collaborative work</topic><topic>Data mining</topic><topic>Decision support systems</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Electronic health records</topic><topic>Encryption</topic><topic>federated deep reinforcement learning (RL)</topic><topic>Health services</topic><topic>Internet of Things</topic><topic>Internet-of-Things-enabled E-health (IoT-Ehealth)</topic><topic>Mobile computing</topic><topic>mobile-edge computing (MEC)</topic><topic>Monitoring</topic><topic>Privacy</topic><topic>Reinforcement learning</topic><topic>Servers</topic><topic>Software-defined networking</topic><toplevel>online_resources</toplevel><creatorcontrib>Xue, Zeyue</creatorcontrib><creatorcontrib>Zhou, Pan</creatorcontrib><creatorcontrib>Xu, Zichuan</creatorcontrib><creatorcontrib>Wang, Xiumin</creatorcontrib><creatorcontrib>Xie, Yulai</creatorcontrib><creatorcontrib>Ding, Xiaofeng</creatorcontrib><creatorcontrib>Wen, Shiping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Zeyue</au><au>Zhou, Pan</au><au>Xu, Zichuan</au><au>Wang, Xiumin</au><au>Xie, Yulai</au><au>Ding, Xiaofeng</au><au>Wen, Shiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Resource-Constrained and Privacy-Preserving Edge-Computing-Enabled Clinical Decision System: A Federated Reinforcement Learning Approach</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>8</volume><issue>11</issue><spage>9122</spage><epage>9138</epage><pages>9122-9138</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Internet-of-Things-enabled E-health system, which could monitor and collect the personal health information (PHI), has gradually transformed the clinical treatment to a more personalized way with in-home monitoring smart devices. Then, with the collected PHI, clinical decision support systems (CDSSs), which are based on data mining techniques and historical electronic medical records (EMRs) to help clinicians make proper treatment decisions, have attracted considerable attention. To address issues, such as network congestion and low rate of responsiveness for traditional methods when implementing CDSSs, we integrate the technologies mobile-edge computing (MEC) and software-defined networking for exploiting the computation resources and storage capacities among edge nodes (ENs) (i.e., MEC servers) in our model. Based on this integrated system, each edge node will deploy a double deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network (DDQN) to obtain a stable and sequential clinical treatment policy. It is enabled by a novel fully decentralized federated framework (FDFF) for aggregating models of DDQN and extracting the knowledge from EMRs across all ENs. Furthermore, we discuss the convergence of FDFF in resource-constrained environments. However, since most EMRs are faced with stringent privacy concerns, we adopt two additively homomorphic encryption schemes to prevent leakage of EMRs' privacy during the training process of FDFF. Finally, we measure the time cost of our additively homomorphic encryption schemes and validate DDQN with experiments on large data sets based on FDFF, which shows promising performance on clinician treatment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3057653</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5048-0319</orcidid><orcidid>https://orcid.org/0000-0002-8629-4622</orcidid><orcidid>https://orcid.org/0000-0001-5438-1468</orcidid><orcidid>https://orcid.org/0000-0001-5757-4396</orcidid><orcidid>https://orcid.org/0000-0001-5054-8515</orcidid><orcidid>https://orcid.org/0000-0002-3772-290X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2021-06, Vol.8 (11), p.9122-9138 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_9349772 |
source | IEEE Electronic Library (IEL) |
subjects | Additively homomorphic encryption clinical decision support system Collaborative work Data mining Decision support systems Edge computing Electronic devices Electronic health records Encryption federated deep reinforcement learning (RL) Health services Internet of Things Internet-of-Things-enabled E-health (IoT-Ehealth) Mobile computing mobile-edge computing (MEC) Monitoring Privacy Reinforcement learning Servers Software-defined networking |
title | A Resource-Constrained and Privacy-Preserving Edge-Computing-Enabled Clinical Decision System: A Federated Reinforcement Learning Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Resource-Constrained%20and%20Privacy-Preserving%20Edge-Computing-Enabled%20Clinical%20Decision%20System:%20A%20Federated%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Xue,%20Zeyue&rft.date=2021-06-01&rft.volume=8&rft.issue=11&rft.spage=9122&rft.epage=9138&rft.pages=9122-9138&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3057653&rft_dat=%3Cproquest_RIE%3E2530110428%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530110428&rft_id=info:pmid/&rft_ieee_id=9349772&rfr_iscdi=true |