A Resource-Constrained and Privacy-Preserving Edge-Computing-Enabled Clinical Decision System: A Federated Reinforcement Learning Approach

Internet-of-Things-enabled E-health system, which could monitor and collect the personal health information (PHI), has gradually transformed the clinical treatment to a more personalized way with in-home monitoring smart devices. Then, with the collected PHI, clinical decision support systems (CDSSs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2021-06, Vol.8 (11), p.9122-9138
Hauptverfasser: Xue, Zeyue, Zhou, Pan, Xu, Zichuan, Wang, Xiumin, Xie, Yulai, Ding, Xiaofeng, Wen, Shiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9138
container_issue 11
container_start_page 9122
container_title IEEE internet of things journal
container_volume 8
creator Xue, Zeyue
Zhou, Pan
Xu, Zichuan
Wang, Xiumin
Xie, Yulai
Ding, Xiaofeng
Wen, Shiping
description Internet-of-Things-enabled E-health system, which could monitor and collect the personal health information (PHI), has gradually transformed the clinical treatment to a more personalized way with in-home monitoring smart devices. Then, with the collected PHI, clinical decision support systems (CDSSs), which are based on data mining techniques and historical electronic medical records (EMRs) to help clinicians make proper treatment decisions, have attracted considerable attention. To address issues, such as network congestion and low rate of responsiveness for traditional methods when implementing CDSSs, we integrate the technologies mobile-edge computing (MEC) and software-defined networking for exploiting the computation resources and storage capacities among edge nodes (ENs) (i.e., MEC servers) in our model. Based on this integrated system, each edge node will deploy a double deep Q -network (DDQN) to obtain a stable and sequential clinical treatment policy. It is enabled by a novel fully decentralized federated framework (FDFF) for aggregating models of DDQN and extracting the knowledge from EMRs across all ENs. Furthermore, we discuss the convergence of FDFF in resource-constrained environments. However, since most EMRs are faced with stringent privacy concerns, we adopt two additively homomorphic encryption schemes to prevent leakage of EMRs' privacy during the training process of FDFF. Finally, we measure the time cost of our additively homomorphic encryption schemes and validate DDQN with experiments on large data sets based on FDFF, which shows promising performance on clinician treatment.
doi_str_mv 10.1109/JIOT.2021.3057653
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9349772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9349772</ieee_id><sourcerecordid>2530110428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3fa1211c042782f139ec440f5e172432234cd4637280bd775b13fde52ec96c043</originalsourceid><addsrcrecordid>eNpNkNFqwjAUhsvYYOJ8gLGbwK7rkpO0sbsTp5tDUJy7LjE9dZGauqQKvsKeeinK2NXJge8_P_mi6J7RPmM0e3qfzld9oMD6nCYyTfhV1AEOMhZpCtf_3rdRz_stpTTEEpalnehnSJbo64PTGI9q6xunjMWCKFuQhTNHpU_xwqFHdzR2Q8bFpuV2-0MT1nhs1boK9Kgy1mhVkRfUxpvako-Tb3D3TIZkggU61QRqicaWdWjaoW3IDJWz7c3hfu9qpb_uoptSVR57l9mNPifj1egtns1fp6PhLNaQ8SbmpWLAmKYC5ABKxjPUQtAyQSZBcAAudCFSLmFA14WUyZrxssAEUGdpSPFu9Hi-G2q_D-ibfBv-b0NlDglv1QgYBIqdKe1q7x2W-d6ZnXKnnNG8tZ631vPWen6xHjIP54xBxD8-4yKTEvgv3A5-Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530110428</pqid></control><display><type>article</type><title>A Resource-Constrained and Privacy-Preserving Edge-Computing-Enabled Clinical Decision System: A Federated Reinforcement Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Xue, Zeyue ; Zhou, Pan ; Xu, Zichuan ; Wang, Xiumin ; Xie, Yulai ; Ding, Xiaofeng ; Wen, Shiping</creator><creatorcontrib>Xue, Zeyue ; Zhou, Pan ; Xu, Zichuan ; Wang, Xiumin ; Xie, Yulai ; Ding, Xiaofeng ; Wen, Shiping</creatorcontrib><description>Internet-of-Things-enabled E-health system, which could monitor and collect the personal health information (PHI), has gradually transformed the clinical treatment to a more personalized way with in-home monitoring smart devices. Then, with the collected PHI, clinical decision support systems (CDSSs), which are based on data mining techniques and historical electronic medical records (EMRs) to help clinicians make proper treatment decisions, have attracted considerable attention. To address issues, such as network congestion and low rate of responsiveness for traditional methods when implementing CDSSs, we integrate the technologies mobile-edge computing (MEC) and software-defined networking for exploiting the computation resources and storage capacities among edge nodes (ENs) (i.e., MEC servers) in our model. Based on this integrated system, each edge node will deploy a double deep &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;Q &lt;/tex-math&gt;&lt;/inline-formula&gt;-network (DDQN) to obtain a stable and sequential clinical treatment policy. It is enabled by a novel fully decentralized federated framework (FDFF) for aggregating models of DDQN and extracting the knowledge from EMRs across all ENs. Furthermore, we discuss the convergence of FDFF in resource-constrained environments. However, since most EMRs are faced with stringent privacy concerns, we adopt two additively homomorphic encryption schemes to prevent leakage of EMRs' privacy during the training process of FDFF. Finally, we measure the time cost of our additively homomorphic encryption schemes and validate DDQN with experiments on large data sets based on FDFF, which shows promising performance on clinician treatment.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3057653</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Additively homomorphic encryption ; clinical decision support system ; Collaborative work ; Data mining ; Decision support systems ; Edge computing ; Electronic devices ; Electronic health records ; Encryption ; federated deep reinforcement learning (RL) ; Health services ; Internet of Things ; Internet-of-Things-enabled E-health (IoT-Ehealth) ; Mobile computing ; mobile-edge computing (MEC) ; Monitoring ; Privacy ; Reinforcement learning ; Servers ; Software-defined networking</subject><ispartof>IEEE internet of things journal, 2021-06, Vol.8 (11), p.9122-9138</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3fa1211c042782f139ec440f5e172432234cd4637280bd775b13fde52ec96c043</citedby><cites>FETCH-LOGICAL-c293t-3fa1211c042782f139ec440f5e172432234cd4637280bd775b13fde52ec96c043</cites><orcidid>0000-0002-5048-0319 ; 0000-0002-8629-4622 ; 0000-0001-5438-1468 ; 0000-0001-5757-4396 ; 0000-0001-5054-8515 ; 0000-0002-3772-290X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9349772$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9349772$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue, Zeyue</creatorcontrib><creatorcontrib>Zhou, Pan</creatorcontrib><creatorcontrib>Xu, Zichuan</creatorcontrib><creatorcontrib>Wang, Xiumin</creatorcontrib><creatorcontrib>Xie, Yulai</creatorcontrib><creatorcontrib>Ding, Xiaofeng</creatorcontrib><creatorcontrib>Wen, Shiping</creatorcontrib><title>A Resource-Constrained and Privacy-Preserving Edge-Computing-Enabled Clinical Decision System: A Federated Reinforcement Learning Approach</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Internet-of-Things-enabled E-health system, which could monitor and collect the personal health information (PHI), has gradually transformed the clinical treatment to a more personalized way with in-home monitoring smart devices. Then, with the collected PHI, clinical decision support systems (CDSSs), which are based on data mining techniques and historical electronic medical records (EMRs) to help clinicians make proper treatment decisions, have attracted considerable attention. To address issues, such as network congestion and low rate of responsiveness for traditional methods when implementing CDSSs, we integrate the technologies mobile-edge computing (MEC) and software-defined networking for exploiting the computation resources and storage capacities among edge nodes (ENs) (i.e., MEC servers) in our model. Based on this integrated system, each edge node will deploy a double deep &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;Q &lt;/tex-math&gt;&lt;/inline-formula&gt;-network (DDQN) to obtain a stable and sequential clinical treatment policy. It is enabled by a novel fully decentralized federated framework (FDFF) for aggregating models of DDQN and extracting the knowledge from EMRs across all ENs. Furthermore, we discuss the convergence of FDFF in resource-constrained environments. However, since most EMRs are faced with stringent privacy concerns, we adopt two additively homomorphic encryption schemes to prevent leakage of EMRs' privacy during the training process of FDFF. Finally, we measure the time cost of our additively homomorphic encryption schemes and validate DDQN with experiments on large data sets based on FDFF, which shows promising performance on clinician treatment.</description><subject>Additively homomorphic encryption</subject><subject>clinical decision support system</subject><subject>Collaborative work</subject><subject>Data mining</subject><subject>Decision support systems</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Electronic health records</subject><subject>Encryption</subject><subject>federated deep reinforcement learning (RL)</subject><subject>Health services</subject><subject>Internet of Things</subject><subject>Internet-of-Things-enabled E-health (IoT-Ehealth)</subject><subject>Mobile computing</subject><subject>mobile-edge computing (MEC)</subject><subject>Monitoring</subject><subject>Privacy</subject><subject>Reinforcement learning</subject><subject>Servers</subject><subject>Software-defined networking</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFqwjAUhsvYYOJ8gLGbwK7rkpO0sbsTp5tDUJy7LjE9dZGauqQKvsKeeinK2NXJge8_P_mi6J7RPmM0e3qfzld9oMD6nCYyTfhV1AEOMhZpCtf_3rdRz_stpTTEEpalnehnSJbo64PTGI9q6xunjMWCKFuQhTNHpU_xwqFHdzR2Q8bFpuV2-0MT1nhs1boK9Kgy1mhVkRfUxpvako-Tb3D3TIZkggU61QRqicaWdWjaoW3IDJWz7c3hfu9qpb_uoptSVR57l9mNPifj1egtns1fp6PhLNaQ8SbmpWLAmKYC5ABKxjPUQtAyQSZBcAAudCFSLmFA14WUyZrxssAEUGdpSPFu9Hi-G2q_D-ibfBv-b0NlDglv1QgYBIqdKe1q7x2W-d6ZnXKnnNG8tZ631vPWen6xHjIP54xBxD8-4yKTEvgv3A5-Gw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Xue, Zeyue</creator><creator>Zhou, Pan</creator><creator>Xu, Zichuan</creator><creator>Wang, Xiumin</creator><creator>Xie, Yulai</creator><creator>Ding, Xiaofeng</creator><creator>Wen, Shiping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5048-0319</orcidid><orcidid>https://orcid.org/0000-0002-8629-4622</orcidid><orcidid>https://orcid.org/0000-0001-5438-1468</orcidid><orcidid>https://orcid.org/0000-0001-5757-4396</orcidid><orcidid>https://orcid.org/0000-0001-5054-8515</orcidid><orcidid>https://orcid.org/0000-0002-3772-290X</orcidid></search><sort><creationdate>20210601</creationdate><title>A Resource-Constrained and Privacy-Preserving Edge-Computing-Enabled Clinical Decision System: A Federated Reinforcement Learning Approach</title><author>Xue, Zeyue ; Zhou, Pan ; Xu, Zichuan ; Wang, Xiumin ; Xie, Yulai ; Ding, Xiaofeng ; Wen, Shiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3fa1211c042782f139ec440f5e172432234cd4637280bd775b13fde52ec96c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additively homomorphic encryption</topic><topic>clinical decision support system</topic><topic>Collaborative work</topic><topic>Data mining</topic><topic>Decision support systems</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Electronic health records</topic><topic>Encryption</topic><topic>federated deep reinforcement learning (RL)</topic><topic>Health services</topic><topic>Internet of Things</topic><topic>Internet-of-Things-enabled E-health (IoT-Ehealth)</topic><topic>Mobile computing</topic><topic>mobile-edge computing (MEC)</topic><topic>Monitoring</topic><topic>Privacy</topic><topic>Reinforcement learning</topic><topic>Servers</topic><topic>Software-defined networking</topic><toplevel>online_resources</toplevel><creatorcontrib>Xue, Zeyue</creatorcontrib><creatorcontrib>Zhou, Pan</creatorcontrib><creatorcontrib>Xu, Zichuan</creatorcontrib><creatorcontrib>Wang, Xiumin</creatorcontrib><creatorcontrib>Xie, Yulai</creatorcontrib><creatorcontrib>Ding, Xiaofeng</creatorcontrib><creatorcontrib>Wen, Shiping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Zeyue</au><au>Zhou, Pan</au><au>Xu, Zichuan</au><au>Wang, Xiumin</au><au>Xie, Yulai</au><au>Ding, Xiaofeng</au><au>Wen, Shiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Resource-Constrained and Privacy-Preserving Edge-Computing-Enabled Clinical Decision System: A Federated Reinforcement Learning Approach</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>8</volume><issue>11</issue><spage>9122</spage><epage>9138</epage><pages>9122-9138</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Internet-of-Things-enabled E-health system, which could monitor and collect the personal health information (PHI), has gradually transformed the clinical treatment to a more personalized way with in-home monitoring smart devices. Then, with the collected PHI, clinical decision support systems (CDSSs), which are based on data mining techniques and historical electronic medical records (EMRs) to help clinicians make proper treatment decisions, have attracted considerable attention. To address issues, such as network congestion and low rate of responsiveness for traditional methods when implementing CDSSs, we integrate the technologies mobile-edge computing (MEC) and software-defined networking for exploiting the computation resources and storage capacities among edge nodes (ENs) (i.e., MEC servers) in our model. Based on this integrated system, each edge node will deploy a double deep &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;Q &lt;/tex-math&gt;&lt;/inline-formula&gt;-network (DDQN) to obtain a stable and sequential clinical treatment policy. It is enabled by a novel fully decentralized federated framework (FDFF) for aggregating models of DDQN and extracting the knowledge from EMRs across all ENs. Furthermore, we discuss the convergence of FDFF in resource-constrained environments. However, since most EMRs are faced with stringent privacy concerns, we adopt two additively homomorphic encryption schemes to prevent leakage of EMRs' privacy during the training process of FDFF. Finally, we measure the time cost of our additively homomorphic encryption schemes and validate DDQN with experiments on large data sets based on FDFF, which shows promising performance on clinician treatment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3057653</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5048-0319</orcidid><orcidid>https://orcid.org/0000-0002-8629-4622</orcidid><orcidid>https://orcid.org/0000-0001-5438-1468</orcidid><orcidid>https://orcid.org/0000-0001-5757-4396</orcidid><orcidid>https://orcid.org/0000-0001-5054-8515</orcidid><orcidid>https://orcid.org/0000-0002-3772-290X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2021-06, Vol.8 (11), p.9122-9138
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_9349772
source IEEE Electronic Library (IEL)
subjects Additively homomorphic encryption
clinical decision support system
Collaborative work
Data mining
Decision support systems
Edge computing
Electronic devices
Electronic health records
Encryption
federated deep reinforcement learning (RL)
Health services
Internet of Things
Internet-of-Things-enabled E-health (IoT-Ehealth)
Mobile computing
mobile-edge computing (MEC)
Monitoring
Privacy
Reinforcement learning
Servers
Software-defined networking
title A Resource-Constrained and Privacy-Preserving Edge-Computing-Enabled Clinical Decision System: A Federated Reinforcement Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Resource-Constrained%20and%20Privacy-Preserving%20Edge-Computing-Enabled%20Clinical%20Decision%20System:%20A%20Federated%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Xue,%20Zeyue&rft.date=2021-06-01&rft.volume=8&rft.issue=11&rft.spage=9122&rft.epage=9138&rft.pages=9122-9138&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3057653&rft_dat=%3Cproquest_RIE%3E2530110428%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530110428&rft_id=info:pmid/&rft_ieee_id=9349772&rfr_iscdi=true