Element-Wise Feature Relation Learning Network for Cross-Spectral Image Patch Matching
Recently, the majority of successful matching approaches are based on convolutional neural networks, which focus on learning the invariant and discriminative features for individual image patches based on image content. However, the image patch matching task is essentially to predict the matching re...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2022-08, Vol.33 (8), p.3372-3386 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3386 |
---|---|
container_issue | 8 |
container_start_page | 3372 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 33 |
creator | Quan, Dou Wang, Shuang Huyan, Ning Chanussot, Jocelyn Wang, Ruojing Liang, Xuefeng Hou, Biao Jiao, Licheng |
description | Recently, the majority of successful matching approaches are based on convolutional neural networks, which focus on learning the invariant and discriminative features for individual image patches based on image content. However, the image patch matching task is essentially to predict the matching relationship of patch pairs, that is, matching (similar) or non-matching (dissimilar). Therefore, we consider that the feature relation (FR) learning is more important than individual feature learning for image patch matching problem. Motivated by this, we propose an element-wise FR learning network for image patch matching, which transforms the image patch matching task into an image relationship-based pattern classification problem and dramatically improves generalization performances on image matching. Meanwhile, the proposed element-wise learning methods encourage full interaction between feature information and can naturally learn FR. Moreover, we propose to aggregate FR from multilevels, which integrates the multiscale FR for more precise matching. Experimental results demonstrate that our proposal achieves superior performances on cross-spectral image patch matching and single spectral image patch matching, and good generalization on image patch retrieval. |
doi_str_mv | 10.1109/TNNLS.2021.3052756 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9349201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9349201</ieee_id><sourcerecordid>2487159187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9b67629778455c3c845a9bffc2cf152894c490d5b514c43545309e560c23a91c3</originalsourceid><addsrcrecordid>eNpdkclOwzAQhi0EAgR9AZCQJS5wSPESx_ERVWWRQkGU7Wa5ZgKBLMVOQLw9Di094INnZH8z-md-hPYoGVJK1MndZJJNh4wwOuREMCmSNbTNaMIixtN0fZXLpy008P6NhJMQkcRqE21xLuI4kck2ehiXUEHdRo-FB3wGpu0c4FsoTVs0Nc7AuLqoX_AE2q_GveO8cXjkGu-j6Rxs60yJLyvzAvjGtPYVX_V34HfRRm5KD4Nl3EH3Z-O70UWUXZ9fjk6zyPJUtJGaBRFMSZnGQlhuQzBqlueW2ZwKlqrYxoo8i5mgIQuiBScKREIs40ZRy3fQ8aLvqyn13BWVcd-6MYW-OM10_0a44ixl8pMG9mjBzl3z0YFvdVV4C2Vpamg6r1mcSioUTWVAD_-hb03n6jCJZomSQoZlqkCxBWX7hTjIVwoo0b1J-tck3ZuklyaFooNl625WwfOq5M-SAOwvgAIAVt-Kx4oRyn8AermSew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697570009</pqid></control><display><type>article</type><title>Element-Wise Feature Relation Learning Network for Cross-Spectral Image Patch Matching</title><source>IEEE Electronic Library (IEL)</source><creator>Quan, Dou ; Wang, Shuang ; Huyan, Ning ; Chanussot, Jocelyn ; Wang, Ruojing ; Liang, Xuefeng ; Hou, Biao ; Jiao, Licheng</creator><creatorcontrib>Quan, Dou ; Wang, Shuang ; Huyan, Ning ; Chanussot, Jocelyn ; Wang, Ruojing ; Liang, Xuefeng ; Hou, Biao ; Jiao, Licheng</creatorcontrib><description>Recently, the majority of successful matching approaches are based on convolutional neural networks, which focus on learning the invariant and discriminative features for individual image patches based on image content. However, the image patch matching task is essentially to predict the matching relationship of patch pairs, that is, matching (similar) or non-matching (dissimilar). Therefore, we consider that the feature relation (FR) learning is more important than individual feature learning for image patch matching problem. Motivated by this, we propose an element-wise FR learning network for image patch matching, which transforms the image patch matching task into an image relationship-based pattern classification problem and dramatically improves generalization performances on image matching. Meanwhile, the proposed element-wise learning methods encourage full interaction between feature information and can naturally learn FR. Moreover, we propose to aggregate FR from multilevels, which integrates the multiscale FR for more precise matching. Experimental results demonstrate that our proposal achieves superior performances on cross-spectral image patch matching and single spectral image patch matching, and good generalization on image patch retrieval.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3052756</identifier><identifier>PMID: 33544676</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aggregated features ; Aggregates ; Artificial neural networks ; element-wise ; Engineering Sciences ; Feature extraction ; feature learning ; Image classification ; Image matching ; Learning ; Learning systems ; Machine learning ; Matching ; Measurement ; Neural networks ; patch matching ; relation learning ; Signal and Image processing ; Task analysis ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2022-08, Vol.33 (8), p.3372-3386</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9b67629778455c3c845a9bffc2cf152894c490d5b514c43545309e560c23a91c3</citedby><cites>FETCH-LOGICAL-c385t-9b67629778455c3c845a9bffc2cf152894c490d5b514c43545309e560c23a91c3</cites><orcidid>0000-0002-1448-0477 ; 0000-0002-1996-186X ; 0000-0001-6943-4657 ; 0000-0003-4940-1211 ; 0000-0002-6123-8659 ; 0000-0003-4817-2875 ; 0000-0003-3354-9617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9349201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,778,782,794,883,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9349201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33544676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03932827$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Quan, Dou</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Huyan, Ning</creatorcontrib><creatorcontrib>Chanussot, Jocelyn</creatorcontrib><creatorcontrib>Wang, Ruojing</creatorcontrib><creatorcontrib>Liang, Xuefeng</creatorcontrib><creatorcontrib>Hou, Biao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><title>Element-Wise Feature Relation Learning Network for Cross-Spectral Image Patch Matching</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Recently, the majority of successful matching approaches are based on convolutional neural networks, which focus on learning the invariant and discriminative features for individual image patches based on image content. However, the image patch matching task is essentially to predict the matching relationship of patch pairs, that is, matching (similar) or non-matching (dissimilar). Therefore, we consider that the feature relation (FR) learning is more important than individual feature learning for image patch matching problem. Motivated by this, we propose an element-wise FR learning network for image patch matching, which transforms the image patch matching task into an image relationship-based pattern classification problem and dramatically improves generalization performances on image matching. Meanwhile, the proposed element-wise learning methods encourage full interaction between feature information and can naturally learn FR. Moreover, we propose to aggregate FR from multilevels, which integrates the multiscale FR for more precise matching. Experimental results demonstrate that our proposal achieves superior performances on cross-spectral image patch matching and single spectral image patch matching, and good generalization on image patch retrieval.</description><subject>Aggregated features</subject><subject>Aggregates</subject><subject>Artificial neural networks</subject><subject>element-wise</subject><subject>Engineering Sciences</subject><subject>Feature extraction</subject><subject>feature learning</subject><subject>Image classification</subject><subject>Image matching</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Matching</subject><subject>Measurement</subject><subject>Neural networks</subject><subject>patch matching</subject><subject>relation learning</subject><subject>Signal and Image processing</subject><subject>Task analysis</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkclOwzAQhi0EAgR9AZCQJS5wSPESx_ERVWWRQkGU7Wa5ZgKBLMVOQLw9Di094INnZH8z-md-hPYoGVJK1MndZJJNh4wwOuREMCmSNbTNaMIixtN0fZXLpy008P6NhJMQkcRqE21xLuI4kck2ehiXUEHdRo-FB3wGpu0c4FsoTVs0Nc7AuLqoX_AE2q_GveO8cXjkGu-j6Rxs60yJLyvzAvjGtPYVX_V34HfRRm5KD4Nl3EH3Z-O70UWUXZ9fjk6zyPJUtJGaBRFMSZnGQlhuQzBqlueW2ZwKlqrYxoo8i5mgIQuiBScKREIs40ZRy3fQ8aLvqyn13BWVcd-6MYW-OM10_0a44ixl8pMG9mjBzl3z0YFvdVV4C2Vpamg6r1mcSioUTWVAD_-hb03n6jCJZomSQoZlqkCxBWX7hTjIVwoo0b1J-tck3ZuklyaFooNl625WwfOq5M-SAOwvgAIAVt-Kx4oRyn8AermSew</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Quan, Dou</creator><creator>Wang, Shuang</creator><creator>Huyan, Ning</creator><creator>Chanussot, Jocelyn</creator><creator>Wang, Ruojing</creator><creator>Liang, Xuefeng</creator><creator>Hou, Biao</creator><creator>Jiao, Licheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1448-0477</orcidid><orcidid>https://orcid.org/0000-0002-1996-186X</orcidid><orcidid>https://orcid.org/0000-0001-6943-4657</orcidid><orcidid>https://orcid.org/0000-0003-4940-1211</orcidid><orcidid>https://orcid.org/0000-0002-6123-8659</orcidid><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid></search><sort><creationdate>20220801</creationdate><title>Element-Wise Feature Relation Learning Network for Cross-Spectral Image Patch Matching</title><author>Quan, Dou ; Wang, Shuang ; Huyan, Ning ; Chanussot, Jocelyn ; Wang, Ruojing ; Liang, Xuefeng ; Hou, Biao ; Jiao, Licheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9b67629778455c3c845a9bffc2cf152894c490d5b514c43545309e560c23a91c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aggregated features</topic><topic>Aggregates</topic><topic>Artificial neural networks</topic><topic>element-wise</topic><topic>Engineering Sciences</topic><topic>Feature extraction</topic><topic>feature learning</topic><topic>Image classification</topic><topic>Image matching</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Matching</topic><topic>Measurement</topic><topic>Neural networks</topic><topic>patch matching</topic><topic>relation learning</topic><topic>Signal and Image processing</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Quan, Dou</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Huyan, Ning</creatorcontrib><creatorcontrib>Chanussot, Jocelyn</creatorcontrib><creatorcontrib>Wang, Ruojing</creatorcontrib><creatorcontrib>Liang, Xuefeng</creatorcontrib><creatorcontrib>Hou, Biao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quan, Dou</au><au>Wang, Shuang</au><au>Huyan, Ning</au><au>Chanussot, Jocelyn</au><au>Wang, Ruojing</au><au>Liang, Xuefeng</au><au>Hou, Biao</au><au>Jiao, Licheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Element-Wise Feature Relation Learning Network for Cross-Spectral Image Patch Matching</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>33</volume><issue>8</issue><spage>3372</spage><epage>3386</epage><pages>3372-3386</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Recently, the majority of successful matching approaches are based on convolutional neural networks, which focus on learning the invariant and discriminative features for individual image patches based on image content. However, the image patch matching task is essentially to predict the matching relationship of patch pairs, that is, matching (similar) or non-matching (dissimilar). Therefore, we consider that the feature relation (FR) learning is more important than individual feature learning for image patch matching problem. Motivated by this, we propose an element-wise FR learning network for image patch matching, which transforms the image patch matching task into an image relationship-based pattern classification problem and dramatically improves generalization performances on image matching. Meanwhile, the proposed element-wise learning methods encourage full interaction between feature information and can naturally learn FR. Moreover, we propose to aggregate FR from multilevels, which integrates the multiscale FR for more precise matching. Experimental results demonstrate that our proposal achieves superior performances on cross-spectral image patch matching and single spectral image patch matching, and good generalization on image patch retrieval.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33544676</pmid><doi>10.1109/TNNLS.2021.3052756</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1448-0477</orcidid><orcidid>https://orcid.org/0000-0002-1996-186X</orcidid><orcidid>https://orcid.org/0000-0001-6943-4657</orcidid><orcidid>https://orcid.org/0000-0003-4940-1211</orcidid><orcidid>https://orcid.org/0000-0002-6123-8659</orcidid><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2022-08, Vol.33 (8), p.3372-3386 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_ieee_primary_9349201 |
source | IEEE Electronic Library (IEL) |
subjects | Aggregated features Aggregates Artificial neural networks element-wise Engineering Sciences Feature extraction feature learning Image classification Image matching Learning Learning systems Machine learning Matching Measurement Neural networks patch matching relation learning Signal and Image processing Task analysis Training |
title | Element-Wise Feature Relation Learning Network for Cross-Spectral Image Patch Matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Element-Wise%20Feature%20Relation%20Learning%20Network%20for%20Cross-Spectral%20Image%20Patch%20Matching&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Quan,%20Dou&rft.date=2022-08-01&rft.volume=33&rft.issue=8&rft.spage=3372&rft.epage=3386&rft.pages=3372-3386&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3052756&rft_dat=%3Cproquest_RIE%3E2487159187%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697570009&rft_id=info:pmid/33544676&rft_ieee_id=9349201&rfr_iscdi=true |