A Wave Peak Frequency Tracking Method Based on Two-Stage Recursive Extended Least Squares Identification Algorithm
This paper proposes the wave peak frequency tracking methods based on the least squares identification algorithm. The wave disturbance model is transformed into an autoregressive moving average (ARMA) model and a recursive extended least squares (RELS) algorithm is derived to identify the model para...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.86514-86522 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86522 |
---|---|
container_issue | |
container_start_page | 86514 |
container_title | IEEE access |
container_volume | 9 |
creator | Yuan, Jianping An, Shun Pan, Xinxiang Mao, Hongfei Wang, Longjin |
description | This paper proposes the wave peak frequency tracking methods based on the least squares identification algorithm. The wave disturbance model is transformed into an autoregressive moving average (ARMA) model and a recursive extended least squares (RELS) algorithm is derived to identify the model parameters by using the auxiliary model identification idea. Furthermore, a two-stage recursive extended least squares (2S-RELS) algorithm is presented to improve the convergence speed by using the hierarchical identification principle. A ship heading control system with the wave peak frequency tracker is built to evaluate the effectiveness of the proposed algorithms. Finally, simulation results show that the proposed algorithms can estimate the wave peak frequency accurately and the 2S-RELS algorithm can improve the convergence speed effectively. |
doi_str_mv | 10.1109/ACCESS.2021.3057454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9349137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9349137</ieee_id><doaj_id>oai_doaj_org_article_d24867c3ff744aacbe96884c90b35aa1</doaj_id><sourcerecordid>2542502427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2bc4168817c82bb131baa6031c48b42ba0618389978250b420cc266bdf70230b3</originalsourceid><addsrcrecordid>eNqNkU9vEzEQxVcIJKq2n6AXSxzRBv_bXe8xrNISKQhEgjhaY-9s6jRdt7ZD6bev060KR3yxNX6_N6N5RXHB6Iwx2n6ad91ivZ5xytlM0KqRlXxTnHBWt6WoRP32n_f74jzGHc1H5VLVnBRhTn7BbyTfEW7IZcD7A472kWwC2Bs3bslXTNe-J58hYk_8SDYPvlwn2CL5gfYQosvs4k_Csc__K4SYyPr-AAEjWfY4Jjc4C8llcr7f-uDS9e1Z8W6AfcTzl_u0-Hm52HRfytW3q2U3X5VWUpVKbqxktVKssYobwwQzADUVzEplJDdAa6aEattG8YrmCrWW17Xph4ZyQY04LZaTb-9hp--Cu4XwqD04_VzwYashJGf3qHsuVd1YMQyNlADWYJs7S9tmmwqAZa8Pk9dd8HlFMemdP4Qxj695JXN_LnmTVWJS2eBjDDi8dmVUH7PSU1b6mJV-ySpTaqIe0PghWpcTwFcyZ1U3gjHRHmNjnUvP6-z8YUwZ_fj_aFZfTGqH-FfVCtky0YgnR3KvSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542502427</pqid></control><display><type>article</type><title>A Wave Peak Frequency Tracking Method Based on Two-Stage Recursive Extended Least Squares Identification Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Yuan, Jianping ; An, Shun ; Pan, Xinxiang ; Mao, Hongfei ; Wang, Longjin</creator><creatorcontrib>Yuan, Jianping ; An, Shun ; Pan, Xinxiang ; Mao, Hongfei ; Wang, Longjin</creatorcontrib><description>This paper proposes the wave peak frequency tracking methods based on the least squares identification algorithm. The wave disturbance model is transformed into an autoregressive moving average (ARMA) model and a recursive extended least squares (RELS) algorithm is derived to identify the model parameters by using the auxiliary model identification idea. Furthermore, a two-stage recursive extended least squares (2S-RELS) algorithm is presented to improve the convergence speed by using the hierarchical identification principle. A ship heading control system with the wave peak frequency tracker is built to evaluate the effectiveness of the proposed algorithms. Finally, simulation results show that the proposed algorithms can estimate the wave peak frequency accurately and the 2S-RELS algorithm can improve the convergence speed effectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3057454</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Autoregressive moving-average models ; Autoregressive processes ; Computational modeling ; Computer Science ; Computer Science, Information Systems ; Convergence ; Engineering ; Engineering, Electrical & Electronic ; Frequency control ; Frequency estimation ; Heuristic algorithms ; hierarchical identification ; Least squares ; Marine vehicles ; Parameter identification ; Peak frequency ; recursive identification ; Science & Technology ; Signal processing algorithms ; Technology ; Telecommunications ; Tracking ; Wave frequency tracker</subject><ispartof>IEEE access, 2021, Vol.9, p.86514-86522</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000673113900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-2bc4168817c82bb131baa6031c48b42ba0618389978250b420cc266bdf70230b3</citedby><cites>FETCH-LOGICAL-c408t-2bc4168817c82bb131baa6031c48b42ba0618389978250b420cc266bdf70230b3</cites><orcidid>0000-0003-1309-714X ; 0000-0003-0584-0554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9349137$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2104,2116,4026,27640,27930,27931,27932,39265,54940</link.rule.ids></links><search><creatorcontrib>Yuan, Jianping</creatorcontrib><creatorcontrib>An, Shun</creatorcontrib><creatorcontrib>Pan, Xinxiang</creatorcontrib><creatorcontrib>Mao, Hongfei</creatorcontrib><creatorcontrib>Wang, Longjin</creatorcontrib><title>A Wave Peak Frequency Tracking Method Based on Two-Stage Recursive Extended Least Squares Identification Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>This paper proposes the wave peak frequency tracking methods based on the least squares identification algorithm. The wave disturbance model is transformed into an autoregressive moving average (ARMA) model and a recursive extended least squares (RELS) algorithm is derived to identify the model parameters by using the auxiliary model identification idea. Furthermore, a two-stage recursive extended least squares (2S-RELS) algorithm is presented to improve the convergence speed by using the hierarchical identification principle. A ship heading control system with the wave peak frequency tracker is built to evaluate the effectiveness of the proposed algorithms. Finally, simulation results show that the proposed algorithms can estimate the wave peak frequency accurately and the 2S-RELS algorithm can improve the convergence speed effectively.</description><subject>Algorithms</subject><subject>Autoregressive moving-average models</subject><subject>Autoregressive processes</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Convergence</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Frequency control</subject><subject>Frequency estimation</subject><subject>Heuristic algorithms</subject><subject>hierarchical identification</subject><subject>Least squares</subject><subject>Marine vehicles</subject><subject>Parameter identification</subject><subject>Peak frequency</subject><subject>recursive identification</subject><subject>Science & Technology</subject><subject>Signal processing algorithms</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Tracking</subject><subject>Wave frequency tracker</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9vEzEQxVcIJKq2n6AXSxzRBv_bXe8xrNISKQhEgjhaY-9s6jRdt7ZD6bev060KR3yxNX6_N6N5RXHB6Iwx2n6ad91ivZ5xytlM0KqRlXxTnHBWt6WoRP32n_f74jzGHc1H5VLVnBRhTn7BbyTfEW7IZcD7A472kWwC2Bs3bslXTNe-J58hYk_8SDYPvlwn2CL5gfYQosvs4k_Csc__K4SYyPr-AAEjWfY4Jjc4C8llcr7f-uDS9e1Z8W6AfcTzl_u0-Hm52HRfytW3q2U3X5VWUpVKbqxktVKssYobwwQzADUVzEplJDdAa6aEattG8YrmCrWW17Xph4ZyQY04LZaTb-9hp--Cu4XwqD04_VzwYashJGf3qHsuVd1YMQyNlADWYJs7S9tmmwqAZa8Pk9dd8HlFMemdP4Qxj695JXN_LnmTVWJS2eBjDDi8dmVUH7PSU1b6mJV-ySpTaqIe0PghWpcTwFcyZ1U3gjHRHmNjnUvP6-z8YUwZ_fj_aFZfTGqH-FfVCtky0YgnR3KvSA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yuan, Jianping</creator><creator>An, Shun</creator><creator>Pan, Xinxiang</creator><creator>Mao, Hongfei</creator><creator>Wang, Longjin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1309-714X</orcidid><orcidid>https://orcid.org/0000-0003-0584-0554</orcidid></search><sort><creationdate>2021</creationdate><title>A Wave Peak Frequency Tracking Method Based on Two-Stage Recursive Extended Least Squares Identification Algorithm</title><author>Yuan, Jianping ; An, Shun ; Pan, Xinxiang ; Mao, Hongfei ; Wang, Longjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2bc4168817c82bb131baa6031c48b42ba0618389978250b420cc266bdf70230b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Autoregressive moving-average models</topic><topic>Autoregressive processes</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Convergence</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Frequency control</topic><topic>Frequency estimation</topic><topic>Heuristic algorithms</topic><topic>hierarchical identification</topic><topic>Least squares</topic><topic>Marine vehicles</topic><topic>Parameter identification</topic><topic>Peak frequency</topic><topic>recursive identification</topic><topic>Science & Technology</topic><topic>Signal processing algorithms</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Tracking</topic><topic>Wave frequency tracker</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Jianping</creatorcontrib><creatorcontrib>An, Shun</creatorcontrib><creatorcontrib>Pan, Xinxiang</creatorcontrib><creatorcontrib>Mao, Hongfei</creatorcontrib><creatorcontrib>Wang, Longjin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Jianping</au><au>An, Shun</au><au>Pan, Xinxiang</au><au>Mao, Hongfei</au><au>Wang, Longjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wave Peak Frequency Tracking Method Based on Two-Stage Recursive Extended Least Squares Identification Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>86514</spage><epage>86522</epage><pages>86514-86522</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes the wave peak frequency tracking methods based on the least squares identification algorithm. The wave disturbance model is transformed into an autoregressive moving average (ARMA) model and a recursive extended least squares (RELS) algorithm is derived to identify the model parameters by using the auxiliary model identification idea. Furthermore, a two-stage recursive extended least squares (2S-RELS) algorithm is presented to improve the convergence speed by using the hierarchical identification principle. A ship heading control system with the wave peak frequency tracker is built to evaluate the effectiveness of the proposed algorithms. Finally, simulation results show that the proposed algorithms can estimate the wave peak frequency accurately and the 2S-RELS algorithm can improve the convergence speed effectively.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3057454</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1309-714X</orcidid><orcidid>https://orcid.org/0000-0003-0584-0554</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.86514-86522 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9349137 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Algorithms Autoregressive moving-average models Autoregressive processes Computational modeling Computer Science Computer Science, Information Systems Convergence Engineering Engineering, Electrical & Electronic Frequency control Frequency estimation Heuristic algorithms hierarchical identification Least squares Marine vehicles Parameter identification Peak frequency recursive identification Science & Technology Signal processing algorithms Technology Telecommunications Tracking Wave frequency tracker |
title | A Wave Peak Frequency Tracking Method Based on Two-Stage Recursive Extended Least Squares Identification Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wave%20Peak%20Frequency%20Tracking%20Method%20Based%20on%20Two-Stage%20Recursive%20Extended%20Least%20Squares%20Identification%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Yuan,%20Jianping&rft.date=2021&rft.volume=9&rft.spage=86514&rft.epage=86522&rft.pages=86514-86522&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3057454&rft_dat=%3Cproquest_ieee_%3E2542502427%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542502427&rft_id=info:pmid/&rft_ieee_id=9349137&rft_doaj_id=oai_doaj_org_article_d24867c3ff744aacbe96884c90b35aa1&rfr_iscdi=true |