A Wave Peak Frequency Tracking Method Based on Two-Stage Recursive Extended Least Squares Identification Algorithm

This paper proposes the wave peak frequency tracking methods based on the least squares identification algorithm. The wave disturbance model is transformed into an autoregressive moving average (ARMA) model and a recursive extended least squares (RELS) algorithm is derived to identify the model para...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.86514-86522
Hauptverfasser: Yuan, Jianping, An, Shun, Pan, Xinxiang, Mao, Hongfei, Wang, Longjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86522
container_issue
container_start_page 86514
container_title IEEE access
container_volume 9
creator Yuan, Jianping
An, Shun
Pan, Xinxiang
Mao, Hongfei
Wang, Longjin
description This paper proposes the wave peak frequency tracking methods based on the least squares identification algorithm. The wave disturbance model is transformed into an autoregressive moving average (ARMA) model and a recursive extended least squares (RELS) algorithm is derived to identify the model parameters by using the auxiliary model identification idea. Furthermore, a two-stage recursive extended least squares (2S-RELS) algorithm is presented to improve the convergence speed by using the hierarchical identification principle. A ship heading control system with the wave peak frequency tracker is built to evaluate the effectiveness of the proposed algorithms. Finally, simulation results show that the proposed algorithms can estimate the wave peak frequency accurately and the 2S-RELS algorithm can improve the convergence speed effectively.
doi_str_mv 10.1109/ACCESS.2021.3057454
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9349137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9349137</ieee_id><doaj_id>oai_doaj_org_article_d24867c3ff744aacbe96884c90b35aa1</doaj_id><sourcerecordid>2542502427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2bc4168817c82bb131baa6031c48b42ba0618389978250b420cc266bdf70230b3</originalsourceid><addsrcrecordid>eNqNkU9vEzEQxVcIJKq2n6AXSxzRBv_bXe8xrNISKQhEgjhaY-9s6jRdt7ZD6bev060KR3yxNX6_N6N5RXHB6Iwx2n6ad91ivZ5xytlM0KqRlXxTnHBWt6WoRP32n_f74jzGHc1H5VLVnBRhTn7BbyTfEW7IZcD7A472kWwC2Bs3bslXTNe-J58hYk_8SDYPvlwn2CL5gfYQosvs4k_Csc__K4SYyPr-AAEjWfY4Jjc4C8llcr7f-uDS9e1Z8W6AfcTzl_u0-Hm52HRfytW3q2U3X5VWUpVKbqxktVKssYobwwQzADUVzEplJDdAa6aEattG8YrmCrWW17Xph4ZyQY04LZaTb-9hp--Cu4XwqD04_VzwYashJGf3qHsuVd1YMQyNlADWYJs7S9tmmwqAZa8Pk9dd8HlFMemdP4Qxj695JXN_LnmTVWJS2eBjDDi8dmVUH7PSU1b6mJV-ySpTaqIe0PghWpcTwFcyZ1U3gjHRHmNjnUvP6-z8YUwZ_fj_aFZfTGqH-FfVCtky0YgnR3KvSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542502427</pqid></control><display><type>article</type><title>A Wave Peak Frequency Tracking Method Based on Two-Stage Recursive Extended Least Squares Identification Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Yuan, Jianping ; An, Shun ; Pan, Xinxiang ; Mao, Hongfei ; Wang, Longjin</creator><creatorcontrib>Yuan, Jianping ; An, Shun ; Pan, Xinxiang ; Mao, Hongfei ; Wang, Longjin</creatorcontrib><description>This paper proposes the wave peak frequency tracking methods based on the least squares identification algorithm. The wave disturbance model is transformed into an autoregressive moving average (ARMA) model and a recursive extended least squares (RELS) algorithm is derived to identify the model parameters by using the auxiliary model identification idea. Furthermore, a two-stage recursive extended least squares (2S-RELS) algorithm is presented to improve the convergence speed by using the hierarchical identification principle. A ship heading control system with the wave peak frequency tracker is built to evaluate the effectiveness of the proposed algorithms. Finally, simulation results show that the proposed algorithms can estimate the wave peak frequency accurately and the 2S-RELS algorithm can improve the convergence speed effectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3057454</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Autoregressive moving-average models ; Autoregressive processes ; Computational modeling ; Computer Science ; Computer Science, Information Systems ; Convergence ; Engineering ; Engineering, Electrical &amp; Electronic ; Frequency control ; Frequency estimation ; Heuristic algorithms ; hierarchical identification ; Least squares ; Marine vehicles ; Parameter identification ; Peak frequency ; recursive identification ; Science &amp; Technology ; Signal processing algorithms ; Technology ; Telecommunications ; Tracking ; Wave frequency tracker</subject><ispartof>IEEE access, 2021, Vol.9, p.86514-86522</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000673113900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-2bc4168817c82bb131baa6031c48b42ba0618389978250b420cc266bdf70230b3</citedby><cites>FETCH-LOGICAL-c408t-2bc4168817c82bb131baa6031c48b42ba0618389978250b420cc266bdf70230b3</cites><orcidid>0000-0003-1309-714X ; 0000-0003-0584-0554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9349137$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2104,2116,4026,27640,27930,27931,27932,39265,54940</link.rule.ids></links><search><creatorcontrib>Yuan, Jianping</creatorcontrib><creatorcontrib>An, Shun</creatorcontrib><creatorcontrib>Pan, Xinxiang</creatorcontrib><creatorcontrib>Mao, Hongfei</creatorcontrib><creatorcontrib>Wang, Longjin</creatorcontrib><title>A Wave Peak Frequency Tracking Method Based on Two-Stage Recursive Extended Least Squares Identification Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>This paper proposes the wave peak frequency tracking methods based on the least squares identification algorithm. The wave disturbance model is transformed into an autoregressive moving average (ARMA) model and a recursive extended least squares (RELS) algorithm is derived to identify the model parameters by using the auxiliary model identification idea. Furthermore, a two-stage recursive extended least squares (2S-RELS) algorithm is presented to improve the convergence speed by using the hierarchical identification principle. A ship heading control system with the wave peak frequency tracker is built to evaluate the effectiveness of the proposed algorithms. Finally, simulation results show that the proposed algorithms can estimate the wave peak frequency accurately and the 2S-RELS algorithm can improve the convergence speed effectively.</description><subject>Algorithms</subject><subject>Autoregressive moving-average models</subject><subject>Autoregressive processes</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Convergence</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Frequency control</subject><subject>Frequency estimation</subject><subject>Heuristic algorithms</subject><subject>hierarchical identification</subject><subject>Least squares</subject><subject>Marine vehicles</subject><subject>Parameter identification</subject><subject>Peak frequency</subject><subject>recursive identification</subject><subject>Science &amp; Technology</subject><subject>Signal processing algorithms</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Tracking</subject><subject>Wave frequency tracker</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9vEzEQxVcIJKq2n6AXSxzRBv_bXe8xrNISKQhEgjhaY-9s6jRdt7ZD6bev060KR3yxNX6_N6N5RXHB6Iwx2n6ad91ivZ5xytlM0KqRlXxTnHBWt6WoRP32n_f74jzGHc1H5VLVnBRhTn7BbyTfEW7IZcD7A472kWwC2Bs3bslXTNe-J58hYk_8SDYPvlwn2CL5gfYQosvs4k_Csc__K4SYyPr-AAEjWfY4Jjc4C8llcr7f-uDS9e1Z8W6AfcTzl_u0-Hm52HRfytW3q2U3X5VWUpVKbqxktVKssYobwwQzADUVzEplJDdAa6aEattG8YrmCrWW17Xph4ZyQY04LZaTb-9hp--Cu4XwqD04_VzwYashJGf3qHsuVd1YMQyNlADWYJs7S9tmmwqAZa8Pk9dd8HlFMemdP4Qxj695JXN_LnmTVWJS2eBjDDi8dmVUH7PSU1b6mJV-ySpTaqIe0PghWpcTwFcyZ1U3gjHRHmNjnUvP6-z8YUwZ_fj_aFZfTGqH-FfVCtky0YgnR3KvSA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yuan, Jianping</creator><creator>An, Shun</creator><creator>Pan, Xinxiang</creator><creator>Mao, Hongfei</creator><creator>Wang, Longjin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1309-714X</orcidid><orcidid>https://orcid.org/0000-0003-0584-0554</orcidid></search><sort><creationdate>2021</creationdate><title>A Wave Peak Frequency Tracking Method Based on Two-Stage Recursive Extended Least Squares Identification Algorithm</title><author>Yuan, Jianping ; An, Shun ; Pan, Xinxiang ; Mao, Hongfei ; Wang, Longjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2bc4168817c82bb131baa6031c48b42ba0618389978250b420cc266bdf70230b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Autoregressive moving-average models</topic><topic>Autoregressive processes</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Convergence</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Frequency control</topic><topic>Frequency estimation</topic><topic>Heuristic algorithms</topic><topic>hierarchical identification</topic><topic>Least squares</topic><topic>Marine vehicles</topic><topic>Parameter identification</topic><topic>Peak frequency</topic><topic>recursive identification</topic><topic>Science &amp; Technology</topic><topic>Signal processing algorithms</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Tracking</topic><topic>Wave frequency tracker</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Jianping</creatorcontrib><creatorcontrib>An, Shun</creatorcontrib><creatorcontrib>Pan, Xinxiang</creatorcontrib><creatorcontrib>Mao, Hongfei</creatorcontrib><creatorcontrib>Wang, Longjin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Jianping</au><au>An, Shun</au><au>Pan, Xinxiang</au><au>Mao, Hongfei</au><au>Wang, Longjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wave Peak Frequency Tracking Method Based on Two-Stage Recursive Extended Least Squares Identification Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>86514</spage><epage>86522</epage><pages>86514-86522</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes the wave peak frequency tracking methods based on the least squares identification algorithm. The wave disturbance model is transformed into an autoregressive moving average (ARMA) model and a recursive extended least squares (RELS) algorithm is derived to identify the model parameters by using the auxiliary model identification idea. Furthermore, a two-stage recursive extended least squares (2S-RELS) algorithm is presented to improve the convergence speed by using the hierarchical identification principle. A ship heading control system with the wave peak frequency tracker is built to evaluate the effectiveness of the proposed algorithms. Finally, simulation results show that the proposed algorithms can estimate the wave peak frequency accurately and the 2S-RELS algorithm can improve the convergence speed effectively.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3057454</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1309-714X</orcidid><orcidid>https://orcid.org/0000-0003-0584-0554</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.86514-86522
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9349137
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Algorithms
Autoregressive moving-average models
Autoregressive processes
Computational modeling
Computer Science
Computer Science, Information Systems
Convergence
Engineering
Engineering, Electrical & Electronic
Frequency control
Frequency estimation
Heuristic algorithms
hierarchical identification
Least squares
Marine vehicles
Parameter identification
Peak frequency
recursive identification
Science & Technology
Signal processing algorithms
Technology
Telecommunications
Tracking
Wave frequency tracker
title A Wave Peak Frequency Tracking Method Based on Two-Stage Recursive Extended Least Squares Identification Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wave%20Peak%20Frequency%20Tracking%20Method%20Based%20on%20Two-Stage%20Recursive%20Extended%20Least%20Squares%20Identification%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Yuan,%20Jianping&rft.date=2021&rft.volume=9&rft.spage=86514&rft.epage=86522&rft.pages=86514-86522&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3057454&rft_dat=%3Cproquest_ieee_%3E2542502427%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542502427&rft_id=info:pmid/&rft_ieee_id=9349137&rft_doaj_id=oai_doaj_org_article_d24867c3ff744aacbe96884c90b35aa1&rfr_iscdi=true