Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing

The mechanical compliance of soft robots comes at a cost of higher uncertainty in their sensing and perception, which deteriorates the accuracy of predictive models. Predictive uncertainty, which expresses the confidence behind model predictions, is necessary to compensate for the loss of accuracy i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2021-04, Vol.6 (2), p.951-957
Hauptverfasser: Ding, Ze Yang, Loo, Junn Yong, Baskaran, Vishnu Monn, Nurzaman, Surya Girinatha, Tan, Chee Pin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 957
container_issue 2
container_start_page 951
container_title IEEE robotics and automation letters
container_volume 6
creator Ding, Ze Yang
Loo, Junn Yong
Baskaran, Vishnu Monn
Nurzaman, Surya Girinatha
Tan, Chee Pin
description The mechanical compliance of soft robots comes at a cost of higher uncertainty in their sensing and perception, which deteriorates the accuracy of predictive models. Predictive uncertainty, which expresses the confidence behind model predictions, is necessary to compensate for the loss of accuracy in soft robot perceptive models. Nevertheless, developing a general framework to capture uncertainties is further challenged by the complex dynamics of soft robots and the difficulties in sensorizing them. In this work, we present a predictive uncertainty estimation framework based on deep learning for soft robot multimodal sensing. We show that the framework can learn to quantify uncertainty and thus is able to express the confidence associated with the predictions during inference. Being data-driven, it is scalable to different types of soft robots and sensor modalities. We demonstrate the framework on a complex multimodal sensing task where a single flex sensor is used to predict the full-body configuration of a soft actuator, as well as the magnitude and location of external contact force. We also discuss how predictive uncertainties are critical to achieve safe learning and model interpretability in soft robotics.
doi_str_mv 10.1109/LRA.2021.3056066
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9343717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9343717</ieee_id><sourcerecordid>2490799906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3887c22c1339dbb11eb406804290d13a6ef79b1012d1e8be4bc99b6ce63c41df3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGrvgpeA562ZZJtsjqXWD6gorcVj2GRnZUvd1CQV-u_dpUU8zQw87wzzEHINbAzA9N1iOR1zxmEs2EQyKc_IgAulMqGkPP_XX5JRjBvGGEy4EnoyIB9vAavGpeYH6bp1GFLZtOlA5zE1X2VqfEvXsWk_6T3iji6wDG0_1T7Qla8TXXrrE33ZbzvcV-WWrrDt-StyUZfbiKNTHZL1w_x99pQtXh-fZ9NF5riGlImiUI5zB0LoyloAtDmTBcu5ZhWIUmKttAUGvAIsLObWaW2lQylcDlUthuT2uHcX_PceYzIbvw9td9LwXDOltWayo9iRcsHHGLA2u9C9Fw4GmOkNms6g6Q2ak8EucnOMNIj4h2uRCwVK_AK3bGwh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490799906</pqid></control><display><type>article</type><title>Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing</title><source>IEEE Electronic Library (IEL)</source><creator>Ding, Ze Yang ; Loo, Junn Yong ; Baskaran, Vishnu Monn ; Nurzaman, Surya Girinatha ; Tan, Chee Pin</creator><creatorcontrib>Ding, Ze Yang ; Loo, Junn Yong ; Baskaran, Vishnu Monn ; Nurzaman, Surya Girinatha ; Tan, Chee Pin</creatorcontrib><description>The mechanical compliance of soft robots comes at a cost of higher uncertainty in their sensing and perception, which deteriorates the accuracy of predictive models. Predictive uncertainty, which expresses the confidence behind model predictions, is necessary to compensate for the loss of accuracy in soft robot perceptive models. Nevertheless, developing a general framework to capture uncertainties is further challenged by the complex dynamics of soft robots and the difficulties in sensorizing them. In this work, we present a predictive uncertainty estimation framework based on deep learning for soft robot multimodal sensing. We show that the framework can learn to quantify uncertainty and thus is able to express the confidence associated with the predictions during inference. Being data-driven, it is scalable to different types of soft robots and sensor modalities. We demonstrate the framework on a complex multimodal sensing task where a single flex sensor is used to predict the full-body configuration of a soft actuator, as well as the magnitude and location of external contact force. We also discuss how predictive uncertainties are critical to achieve safe learning and model interpretability in soft robotics.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3056066</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Contact force ; control ; Deep learning ; deep learning methods ; learning for soft robots ; Model accuracy ; Modeling ; Multimodal sensors ; Prediction models ; Predictions ; Predictive models ; Robot sensing systems ; Robots ; Sensors ; Soft robotics ; Uncertainty</subject><ispartof>IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.951-957</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-3887c22c1339dbb11eb406804290d13a6ef79b1012d1e8be4bc99b6ce63c41df3</citedby><cites>FETCH-LOGICAL-c291t-3887c22c1339dbb11eb406804290d13a6ef79b1012d1e8be4bc99b6ce63c41df3</cites><orcidid>0000-0003-0162-3763 ; 0000-0002-8157-6495 ; 0000-0001-7211-8540 ; 0000-0001-6809-5817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9343717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9343717$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ding, Ze Yang</creatorcontrib><creatorcontrib>Loo, Junn Yong</creatorcontrib><creatorcontrib>Baskaran, Vishnu Monn</creatorcontrib><creatorcontrib>Nurzaman, Surya Girinatha</creatorcontrib><creatorcontrib>Tan, Chee Pin</creatorcontrib><title>Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>The mechanical compliance of soft robots comes at a cost of higher uncertainty in their sensing and perception, which deteriorates the accuracy of predictive models. Predictive uncertainty, which expresses the confidence behind model predictions, is necessary to compensate for the loss of accuracy in soft robot perceptive models. Nevertheless, developing a general framework to capture uncertainties is further challenged by the complex dynamics of soft robots and the difficulties in sensorizing them. In this work, we present a predictive uncertainty estimation framework based on deep learning for soft robot multimodal sensing. We show that the framework can learn to quantify uncertainty and thus is able to express the confidence associated with the predictions during inference. Being data-driven, it is scalable to different types of soft robots and sensor modalities. We demonstrate the framework on a complex multimodal sensing task where a single flex sensor is used to predict the full-body configuration of a soft actuator, as well as the magnitude and location of external contact force. We also discuss how predictive uncertainties are critical to achieve safe learning and model interpretability in soft robotics.</description><subject>Actuators</subject><subject>Contact force</subject><subject>control</subject><subject>Deep learning</subject><subject>deep learning methods</subject><subject>learning for soft robots</subject><subject>Model accuracy</subject><subject>Modeling</subject><subject>Multimodal sensors</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>Sensors</subject><subject>Soft robotics</subject><subject>Uncertainty</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGrvgpeA562ZZJtsjqXWD6gorcVj2GRnZUvd1CQV-u_dpUU8zQw87wzzEHINbAzA9N1iOR1zxmEs2EQyKc_IgAulMqGkPP_XX5JRjBvGGEy4EnoyIB9vAavGpeYH6bp1GFLZtOlA5zE1X2VqfEvXsWk_6T3iji6wDG0_1T7Qla8TXXrrE33ZbzvcV-WWrrDt-StyUZfbiKNTHZL1w_x99pQtXh-fZ9NF5riGlImiUI5zB0LoyloAtDmTBcu5ZhWIUmKttAUGvAIsLObWaW2lQylcDlUthuT2uHcX_PceYzIbvw9td9LwXDOltWayo9iRcsHHGLA2u9C9Fw4GmOkNms6g6Q2ak8EucnOMNIj4h2uRCwVK_AK3bGwh</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Ding, Ze Yang</creator><creator>Loo, Junn Yong</creator><creator>Baskaran, Vishnu Monn</creator><creator>Nurzaman, Surya Girinatha</creator><creator>Tan, Chee Pin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0162-3763</orcidid><orcidid>https://orcid.org/0000-0002-8157-6495</orcidid><orcidid>https://orcid.org/0000-0001-7211-8540</orcidid><orcidid>https://orcid.org/0000-0001-6809-5817</orcidid></search><sort><creationdate>20210401</creationdate><title>Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing</title><author>Ding, Ze Yang ; Loo, Junn Yong ; Baskaran, Vishnu Monn ; Nurzaman, Surya Girinatha ; Tan, Chee Pin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3887c22c1339dbb11eb406804290d13a6ef79b1012d1e8be4bc99b6ce63c41df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Contact force</topic><topic>control</topic><topic>Deep learning</topic><topic>deep learning methods</topic><topic>learning for soft robots</topic><topic>Model accuracy</topic><topic>Modeling</topic><topic>Multimodal sensors</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>Sensors</topic><topic>Soft robotics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Ze Yang</creatorcontrib><creatorcontrib>Loo, Junn Yong</creatorcontrib><creatorcontrib>Baskaran, Vishnu Monn</creatorcontrib><creatorcontrib>Nurzaman, Surya Girinatha</creatorcontrib><creatorcontrib>Tan, Chee Pin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ding, Ze Yang</au><au>Loo, Junn Yong</au><au>Baskaran, Vishnu Monn</au><au>Nurzaman, Surya Girinatha</au><au>Tan, Chee Pin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>6</volume><issue>2</issue><spage>951</spage><epage>957</epage><pages>951-957</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>The mechanical compliance of soft robots comes at a cost of higher uncertainty in their sensing and perception, which deteriorates the accuracy of predictive models. Predictive uncertainty, which expresses the confidence behind model predictions, is necessary to compensate for the loss of accuracy in soft robot perceptive models. Nevertheless, developing a general framework to capture uncertainties is further challenged by the complex dynamics of soft robots and the difficulties in sensorizing them. In this work, we present a predictive uncertainty estimation framework based on deep learning for soft robot multimodal sensing. We show that the framework can learn to quantify uncertainty and thus is able to express the confidence associated with the predictions during inference. Being data-driven, it is scalable to different types of soft robots and sensor modalities. We demonstrate the framework on a complex multimodal sensing task where a single flex sensor is used to predict the full-body configuration of a soft actuator, as well as the magnitude and location of external contact force. We also discuss how predictive uncertainties are critical to achieve safe learning and model interpretability in soft robotics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3056066</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0162-3763</orcidid><orcidid>https://orcid.org/0000-0002-8157-6495</orcidid><orcidid>https://orcid.org/0000-0001-7211-8540</orcidid><orcidid>https://orcid.org/0000-0001-6809-5817</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.951-957
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_9343717
source IEEE Electronic Library (IEL)
subjects Actuators
Contact force
control
Deep learning
deep learning methods
learning for soft robots
Model accuracy
Modeling
Multimodal sensors
Prediction models
Predictions
Predictive models
Robot sensing systems
Robots
Sensors
Soft robotics
Uncertainty
title Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Uncertainty%20Estimation%20Using%20Deep%20Learning%20for%20Soft%20Robot%20Multimodal%20Sensing&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Ding,%20Ze%20Yang&rft.date=2021-04-01&rft.volume=6&rft.issue=2&rft.spage=951&rft.epage=957&rft.pages=951-957&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3056066&rft_dat=%3Cproquest_RIE%3E2490799906%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490799906&rft_id=info:pmid/&rft_ieee_id=9343717&rfr_iscdi=true