Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing
The mechanical compliance of soft robots comes at a cost of higher uncertainty in their sensing and perception, which deteriorates the accuracy of predictive models. Predictive uncertainty, which expresses the confidence behind model predictions, is necessary to compensate for the loss of accuracy i...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2021-04, Vol.6 (2), p.951-957 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 957 |
---|---|
container_issue | 2 |
container_start_page | 951 |
container_title | IEEE robotics and automation letters |
container_volume | 6 |
creator | Ding, Ze Yang Loo, Junn Yong Baskaran, Vishnu Monn Nurzaman, Surya Girinatha Tan, Chee Pin |
description | The mechanical compliance of soft robots comes at a cost of higher uncertainty in their sensing and perception, which deteriorates the accuracy of predictive models. Predictive uncertainty, which expresses the confidence behind model predictions, is necessary to compensate for the loss of accuracy in soft robot perceptive models. Nevertheless, developing a general framework to capture uncertainties is further challenged by the complex dynamics of soft robots and the difficulties in sensorizing them. In this work, we present a predictive uncertainty estimation framework based on deep learning for soft robot multimodal sensing. We show that the framework can learn to quantify uncertainty and thus is able to express the confidence associated with the predictions during inference. Being data-driven, it is scalable to different types of soft robots and sensor modalities. We demonstrate the framework on a complex multimodal sensing task where a single flex sensor is used to predict the full-body configuration of a soft actuator, as well as the magnitude and location of external contact force. We also discuss how predictive uncertainties are critical to achieve safe learning and model interpretability in soft robotics. |
doi_str_mv | 10.1109/LRA.2021.3056066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9343717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9343717</ieee_id><sourcerecordid>2490799906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3887c22c1339dbb11eb406804290d13a6ef79b1012d1e8be4bc99b6ce63c41df3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGrvgpeA562ZZJtsjqXWD6gorcVj2GRnZUvd1CQV-u_dpUU8zQw87wzzEHINbAzA9N1iOR1zxmEs2EQyKc_IgAulMqGkPP_XX5JRjBvGGEy4EnoyIB9vAavGpeYH6bp1GFLZtOlA5zE1X2VqfEvXsWk_6T3iji6wDG0_1T7Qla8TXXrrE33ZbzvcV-WWrrDt-StyUZfbiKNTHZL1w_x99pQtXh-fZ9NF5riGlImiUI5zB0LoyloAtDmTBcu5ZhWIUmKttAUGvAIsLObWaW2lQylcDlUthuT2uHcX_PceYzIbvw9td9LwXDOltWayo9iRcsHHGLA2u9C9Fw4GmOkNms6g6Q2ak8EucnOMNIj4h2uRCwVK_AK3bGwh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490799906</pqid></control><display><type>article</type><title>Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing</title><source>IEEE Electronic Library (IEL)</source><creator>Ding, Ze Yang ; Loo, Junn Yong ; Baskaran, Vishnu Monn ; Nurzaman, Surya Girinatha ; Tan, Chee Pin</creator><creatorcontrib>Ding, Ze Yang ; Loo, Junn Yong ; Baskaran, Vishnu Monn ; Nurzaman, Surya Girinatha ; Tan, Chee Pin</creatorcontrib><description>The mechanical compliance of soft robots comes at a cost of higher uncertainty in their sensing and perception, which deteriorates the accuracy of predictive models. Predictive uncertainty, which expresses the confidence behind model predictions, is necessary to compensate for the loss of accuracy in soft robot perceptive models. Nevertheless, developing a general framework to capture uncertainties is further challenged by the complex dynamics of soft robots and the difficulties in sensorizing them. In this work, we present a predictive uncertainty estimation framework based on deep learning for soft robot multimodal sensing. We show that the framework can learn to quantify uncertainty and thus is able to express the confidence associated with the predictions during inference. Being data-driven, it is scalable to different types of soft robots and sensor modalities. We demonstrate the framework on a complex multimodal sensing task where a single flex sensor is used to predict the full-body configuration of a soft actuator, as well as the magnitude and location of external contact force. We also discuss how predictive uncertainties are critical to achieve safe learning and model interpretability in soft robotics.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3056066</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Contact force ; control ; Deep learning ; deep learning methods ; learning for soft robots ; Model accuracy ; Modeling ; Multimodal sensors ; Prediction models ; Predictions ; Predictive models ; Robot sensing systems ; Robots ; Sensors ; Soft robotics ; Uncertainty</subject><ispartof>IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.951-957</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-3887c22c1339dbb11eb406804290d13a6ef79b1012d1e8be4bc99b6ce63c41df3</citedby><cites>FETCH-LOGICAL-c291t-3887c22c1339dbb11eb406804290d13a6ef79b1012d1e8be4bc99b6ce63c41df3</cites><orcidid>0000-0003-0162-3763 ; 0000-0002-8157-6495 ; 0000-0001-7211-8540 ; 0000-0001-6809-5817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9343717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9343717$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ding, Ze Yang</creatorcontrib><creatorcontrib>Loo, Junn Yong</creatorcontrib><creatorcontrib>Baskaran, Vishnu Monn</creatorcontrib><creatorcontrib>Nurzaman, Surya Girinatha</creatorcontrib><creatorcontrib>Tan, Chee Pin</creatorcontrib><title>Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>The mechanical compliance of soft robots comes at a cost of higher uncertainty in their sensing and perception, which deteriorates the accuracy of predictive models. Predictive uncertainty, which expresses the confidence behind model predictions, is necessary to compensate for the loss of accuracy in soft robot perceptive models. Nevertheless, developing a general framework to capture uncertainties is further challenged by the complex dynamics of soft robots and the difficulties in sensorizing them. In this work, we present a predictive uncertainty estimation framework based on deep learning for soft robot multimodal sensing. We show that the framework can learn to quantify uncertainty and thus is able to express the confidence associated with the predictions during inference. Being data-driven, it is scalable to different types of soft robots and sensor modalities. We demonstrate the framework on a complex multimodal sensing task where a single flex sensor is used to predict the full-body configuration of a soft actuator, as well as the magnitude and location of external contact force. We also discuss how predictive uncertainties are critical to achieve safe learning and model interpretability in soft robotics.</description><subject>Actuators</subject><subject>Contact force</subject><subject>control</subject><subject>Deep learning</subject><subject>deep learning methods</subject><subject>learning for soft robots</subject><subject>Model accuracy</subject><subject>Modeling</subject><subject>Multimodal sensors</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>Sensors</subject><subject>Soft robotics</subject><subject>Uncertainty</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGrvgpeA562ZZJtsjqXWD6gorcVj2GRnZUvd1CQV-u_dpUU8zQw87wzzEHINbAzA9N1iOR1zxmEs2EQyKc_IgAulMqGkPP_XX5JRjBvGGEy4EnoyIB9vAavGpeYH6bp1GFLZtOlA5zE1X2VqfEvXsWk_6T3iji6wDG0_1T7Qla8TXXrrE33ZbzvcV-WWrrDt-StyUZfbiKNTHZL1w_x99pQtXh-fZ9NF5riGlImiUI5zB0LoyloAtDmTBcu5ZhWIUmKttAUGvAIsLObWaW2lQylcDlUthuT2uHcX_PceYzIbvw9td9LwXDOltWayo9iRcsHHGLA2u9C9Fw4GmOkNms6g6Q2ak8EucnOMNIj4h2uRCwVK_AK3bGwh</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Ding, Ze Yang</creator><creator>Loo, Junn Yong</creator><creator>Baskaran, Vishnu Monn</creator><creator>Nurzaman, Surya Girinatha</creator><creator>Tan, Chee Pin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0162-3763</orcidid><orcidid>https://orcid.org/0000-0002-8157-6495</orcidid><orcidid>https://orcid.org/0000-0001-7211-8540</orcidid><orcidid>https://orcid.org/0000-0001-6809-5817</orcidid></search><sort><creationdate>20210401</creationdate><title>Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing</title><author>Ding, Ze Yang ; Loo, Junn Yong ; Baskaran, Vishnu Monn ; Nurzaman, Surya Girinatha ; Tan, Chee Pin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3887c22c1339dbb11eb406804290d13a6ef79b1012d1e8be4bc99b6ce63c41df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Contact force</topic><topic>control</topic><topic>Deep learning</topic><topic>deep learning methods</topic><topic>learning for soft robots</topic><topic>Model accuracy</topic><topic>Modeling</topic><topic>Multimodal sensors</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>Sensors</topic><topic>Soft robotics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Ze Yang</creatorcontrib><creatorcontrib>Loo, Junn Yong</creatorcontrib><creatorcontrib>Baskaran, Vishnu Monn</creatorcontrib><creatorcontrib>Nurzaman, Surya Girinatha</creatorcontrib><creatorcontrib>Tan, Chee Pin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ding, Ze Yang</au><au>Loo, Junn Yong</au><au>Baskaran, Vishnu Monn</au><au>Nurzaman, Surya Girinatha</au><au>Tan, Chee Pin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>6</volume><issue>2</issue><spage>951</spage><epage>957</epage><pages>951-957</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>The mechanical compliance of soft robots comes at a cost of higher uncertainty in their sensing and perception, which deteriorates the accuracy of predictive models. Predictive uncertainty, which expresses the confidence behind model predictions, is necessary to compensate for the loss of accuracy in soft robot perceptive models. Nevertheless, developing a general framework to capture uncertainties is further challenged by the complex dynamics of soft robots and the difficulties in sensorizing them. In this work, we present a predictive uncertainty estimation framework based on deep learning for soft robot multimodal sensing. We show that the framework can learn to quantify uncertainty and thus is able to express the confidence associated with the predictions during inference. Being data-driven, it is scalable to different types of soft robots and sensor modalities. We demonstrate the framework on a complex multimodal sensing task where a single flex sensor is used to predict the full-body configuration of a soft actuator, as well as the magnitude and location of external contact force. We also discuss how predictive uncertainties are critical to achieve safe learning and model interpretability in soft robotics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3056066</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0162-3763</orcidid><orcidid>https://orcid.org/0000-0002-8157-6495</orcidid><orcidid>https://orcid.org/0000-0001-7211-8540</orcidid><orcidid>https://orcid.org/0000-0001-6809-5817</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.951-957 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_9343717 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Contact force control Deep learning deep learning methods learning for soft robots Model accuracy Modeling Multimodal sensors Prediction models Predictions Predictive models Robot sensing systems Robots Sensors Soft robotics Uncertainty |
title | Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Uncertainty%20Estimation%20Using%20Deep%20Learning%20for%20Soft%20Robot%20Multimodal%20Sensing&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Ding,%20Ze%20Yang&rft.date=2021-04-01&rft.volume=6&rft.issue=2&rft.spage=951&rft.epage=957&rft.pages=951-957&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3056066&rft_dat=%3Cproquest_RIE%3E2490799906%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490799906&rft_id=info:pmid/&rft_ieee_id=9343717&rfr_iscdi=true |