Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles

A key problem in a multiobjective evolutionary system is how to take measures to preserve diversity in the population. The mechanism of natural immune system and entropy principle are applied in a multiobjective evolutionary process to solve this problem and a strategy of preserving diversity in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xunxue Cui, Miao Li, Tingjian Fang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1321 vol. 2
container_issue
container_start_page 1316
container_title
container_volume 2
creator Xunxue Cui
Miao Li
Tingjian Fang
description A key problem in a multiobjective evolutionary system is how to take measures to preserve diversity in the population. The mechanism of natural immune system and entropy principle are applied in a multiobjective evolutionary process to solve this problem and a strategy of preserving diversity in the population of a multiobjective evolutionary algorithm based on immune and entropy principles is introduced. The detailed design method is shown. Finally, we describe the computer simulation of implementing several two-objective flow shop scheduling problems and compare the computing results of the new method with the multiobjective genetic algorithm. Experimental results show that this strategy can effectively preserve population diversity and it has good search performance.
doi_str_mv 10.1109/CEC.2001.934343
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_934343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>934343</ieee_id><sourcerecordid>934343</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-18b697140fecbcdd00e48bccbef69406cfcb8c03cb19e70a5e2e0e96080832f83</originalsourceid><addsrcrecordid>eNotkEtLxDAUhQMiqOOsBVf5A603TSdNllLGBwy4UNdDHreaIW1Kmw7Mvzc6nru48HEfh0PIHYOSMVAP7bYtKwBWKl7nuiA30EjgQmwafkXW83yALK7qhvNr0r-nxZ1o7OgYxyXo5ONAnT_iNPv0x_slZGgOaFPGFI8xLL9TejpRHb7i5NN3T42e0dG86_t-GZDqwVEc0hTHEx0nP1g_BpxvyWWnw4zr_74in0_bj_al2L09v7aPu8IzqFPBpBGqYTV0aI11DgBraaw12AlVg7CdNdICt4YpbEBvsEJAJUCC5FUn-Yrcn-96RNzn_312uz8Hwn8A00ZZ9w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xunxue Cui ; Miao Li ; Tingjian Fang</creator><creatorcontrib>Xunxue Cui ; Miao Li ; Tingjian Fang</creatorcontrib><description>A key problem in a multiobjective evolutionary system is how to take measures to preserve diversity in the population. The mechanism of natural immune system and entropy principle are applied in a multiobjective evolutionary process to solve this problem and a strategy of preserving diversity in the population of a multiobjective evolutionary algorithm based on immune and entropy principles is introduced. The detailed design method is shown. Finally, we describe the computer simulation of implementing several two-objective flow shop scheduling problems and compare the computing results of the new method with the multiobjective genetic algorithm. Experimental results show that this strategy can effectively preserve population diversity and it has good search performance.</description><identifier>ISBN: 0780366573</identifier><identifier>ISBN: 9780780366572</identifier><identifier>DOI: 10.1109/CEC.2001.934343</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; Boosting ; Computer simulation ; Design methodology ; Entropy ; Evolutionary computation ; Genetic algorithms ; Immune system ; Processor scheduling ; Space exploration</subject><ispartof>Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), 2001, Vol.2, p.1316-1321 vol. 2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/934343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/934343$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xunxue Cui</creatorcontrib><creatorcontrib>Miao Li</creatorcontrib><creatorcontrib>Tingjian Fang</creatorcontrib><title>Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles</title><title>Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546)</title><addtitle>CEC</addtitle><description>A key problem in a multiobjective evolutionary system is how to take measures to preserve diversity in the population. The mechanism of natural immune system and entropy principle are applied in a multiobjective evolutionary process to solve this problem and a strategy of preserving diversity in the population of a multiobjective evolutionary algorithm based on immune and entropy principles is introduced. The detailed design method is shown. Finally, we describe the computer simulation of implementing several two-objective flow shop scheduling problems and compare the computing results of the new method with the multiobjective genetic algorithm. Experimental results show that this strategy can effectively preserve population diversity and it has good search performance.</description><subject>Automation</subject><subject>Boosting</subject><subject>Computer simulation</subject><subject>Design methodology</subject><subject>Entropy</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Immune system</subject><subject>Processor scheduling</subject><subject>Space exploration</subject><isbn>0780366573</isbn><isbn>9780780366572</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtLxDAUhQMiqOOsBVf5A603TSdNllLGBwy4UNdDHreaIW1Kmw7Mvzc6nru48HEfh0PIHYOSMVAP7bYtKwBWKl7nuiA30EjgQmwafkXW83yALK7qhvNr0r-nxZ1o7OgYxyXo5ONAnT_iNPv0x_slZGgOaFPGFI8xLL9TejpRHb7i5NN3T42e0dG86_t-GZDqwVEc0hTHEx0nP1g_BpxvyWWnw4zr_74in0_bj_al2L09v7aPu8IzqFPBpBGqYTV0aI11DgBraaw12AlVg7CdNdICt4YpbEBvsEJAJUCC5FUn-Yrcn-96RNzn_312uz8Hwn8A00ZZ9w</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Xunxue Cui</creator><creator>Miao Li</creator><creator>Tingjian Fang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2001</creationdate><title>Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles</title><author>Xunxue Cui ; Miao Li ; Tingjian Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-18b697140fecbcdd00e48bccbef69406cfcb8c03cb19e70a5e2e0e96080832f83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Automation</topic><topic>Boosting</topic><topic>Computer simulation</topic><topic>Design methodology</topic><topic>Entropy</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Immune system</topic><topic>Processor scheduling</topic><topic>Space exploration</topic><toplevel>online_resources</toplevel><creatorcontrib>Xunxue Cui</creatorcontrib><creatorcontrib>Miao Li</creatorcontrib><creatorcontrib>Tingjian Fang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xunxue Cui</au><au>Miao Li</au><au>Tingjian Fang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles</atitle><btitle>Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546)</btitle><stitle>CEC</stitle><date>2001</date><risdate>2001</risdate><volume>2</volume><spage>1316</spage><epage>1321 vol. 2</epage><pages>1316-1321 vol. 2</pages><isbn>0780366573</isbn><isbn>9780780366572</isbn><abstract>A key problem in a multiobjective evolutionary system is how to take measures to preserve diversity in the population. The mechanism of natural immune system and entropy principle are applied in a multiobjective evolutionary process to solve this problem and a strategy of preserving diversity in the population of a multiobjective evolutionary algorithm based on immune and entropy principles is introduced. The detailed design method is shown. Finally, we describe the computer simulation of implementing several two-objective flow shop scheduling problems and compare the computing results of the new method with the multiobjective genetic algorithm. Experimental results show that this strategy can effectively preserve population diversity and it has good search performance.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2001.934343</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780366573
ispartof Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), 2001, Vol.2, p.1316-1321 vol. 2
issn
language eng
recordid cdi_ieee_primary_934343
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automation
Boosting
Computer simulation
Design methodology
Entropy
Evolutionary computation
Genetic algorithms
Immune system
Processor scheduling
Space exploration
title Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Study%20of%20population%20diversity%20of%20multiobjective%20evolutionary%20algorithm%20based%20on%20immune%20and%20entropy%20principles&rft.btitle=Proceedings%20of%20the%202001%20Congress%20on%20Evolutionary%20Computation%20(IEEE%20Cat.%20No.01TH8546)&rft.au=Xunxue%20Cui&rft.date=2001&rft.volume=2&rft.spage=1316&rft.epage=1321%20vol.%202&rft.pages=1316-1321%20vol.%202&rft.isbn=0780366573&rft.isbn_list=9780780366572&rft_id=info:doi/10.1109/CEC.2001.934343&rft_dat=%3Cieee_6IE%3E934343%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=934343&rfr_iscdi=true