An evolutionary multi-objective local selection algorithm for customer targeting

In an increasingly competitive marketplace, one of the most interesting and challenging problems is how to identify and profile customers who are most likely to be interested in new products or services. At the same time, minimizing the number of variables used in the prediction task is important wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YongSeog Kim, Street, W.N., Menczer, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766 vol. 2
container_issue
container_start_page 759
container_title
container_volume 2
creator YongSeog Kim
Street, W.N.
Menczer, F.
description In an increasingly competitive marketplace, one of the most interesting and challenging problems is how to identify and profile customers who are most likely to be interested in new products or services. At the same time, minimizing the number of variables used in the prediction task is important with large databases. We consider a novel application of evolutionary multi-objective algorithms for customer targeting. Evolutionary algorithms are considered effective in solving multi-objective problems because of their inherent parallelism. We use ELSA, an evolutionary local selection algorithm that maintains a diverse population of solutions approximating the Pareto front in a multi-dimensional objective space. We use artificial neural networks (ANNs) for customer prediction and ELSA to search for promising subsets of features. Our results on a real data set show that our approach is easier to interpret and more accurate than the traditional method used in marketing.
doi_str_mv 10.1109/CEC.2001.934266
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_934266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>934266</ieee_id><sourcerecordid>934266</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-7b3a258c9a2854ca3551c9bd402ee98db553a7f27231a50e84b94a197439c8ce3</originalsourceid><addsrcrecordid>eNotj01LAzEURQMiqLVrwVX-wNQkL5kkyzLUDyjoQtclk74ZUzITyWQK_nsr7d1czuZyLiEPnK04Z_ap2TQrwRhfWZCirq_IHdOGQV0rDTdkOU0HdgpYqQFuycd6pHhMcS4hjS7_0mGOJVSpPaAv4Yg0Ju8inTD-cxqpi33KoXwPtEuZ-nkqacBMi8s9ljD29-S6c3HC5aUX5Ot589m8Vtv3l7dmva0CZ7JUugUnlPHWCaOkd6AU97bdSyYQrdm3SoHTndACuFMMjWytdNxqCdYbj7Agj-fdgIi7nxyGk_3u_Bn-ACFKTYQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An evolutionary multi-objective local selection algorithm for customer targeting</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>YongSeog Kim ; Street, W.N. ; Menczer, F.</creator><creatorcontrib>YongSeog Kim ; Street, W.N. ; Menczer, F.</creatorcontrib><description>In an increasingly competitive marketplace, one of the most interesting and challenging problems is how to identify and profile customers who are most likely to be interested in new products or services. At the same time, minimizing the number of variables used in the prediction task is important with large databases. We consider a novel application of evolutionary multi-objective algorithms for customer targeting. Evolutionary algorithms are considered effective in solving multi-objective problems because of their inherent parallelism. We use ELSA, an evolutionary local selection algorithm that maintains a diverse population of solutions approximating the Pareto front in a multi-dimensional objective space. We use artificial neural networks (ANNs) for customer prediction and ELSA to search for promising subsets of features. Our results on a real data set show that our approach is easier to interpret and more accurate than the traditional method used in marketing.</description><identifier>ISBN: 0780366573</identifier><identifier>ISBN: 9780780366572</identifier><identifier>DOI: 10.1109/CEC.2001.934266</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Cities and towns ; Costs ; Data engineering ; Decision making ; Humans ; Neural networks ; Principal component analysis ; Space exploration</subject><ispartof>Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), 2001, Vol.2, p.759-766 vol. 2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/934266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/934266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>YongSeog Kim</creatorcontrib><creatorcontrib>Street, W.N.</creatorcontrib><creatorcontrib>Menczer, F.</creatorcontrib><title>An evolutionary multi-objective local selection algorithm for customer targeting</title><title>Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546)</title><addtitle>CEC</addtitle><description>In an increasingly competitive marketplace, one of the most interesting and challenging problems is how to identify and profile customers who are most likely to be interested in new products or services. At the same time, minimizing the number of variables used in the prediction task is important with large databases. We consider a novel application of evolutionary multi-objective algorithms for customer targeting. Evolutionary algorithms are considered effective in solving multi-objective problems because of their inherent parallelism. We use ELSA, an evolutionary local selection algorithm that maintains a diverse population of solutions approximating the Pareto front in a multi-dimensional objective space. We use artificial neural networks (ANNs) for customer prediction and ELSA to search for promising subsets of features. Our results on a real data set show that our approach is easier to interpret and more accurate than the traditional method used in marketing.</description><subject>Artificial neural networks</subject><subject>Cities and towns</subject><subject>Costs</subject><subject>Data engineering</subject><subject>Decision making</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Principal component analysis</subject><subject>Space exploration</subject><isbn>0780366573</isbn><isbn>9780780366572</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LAzEURQMiqLVrwVX-wNQkL5kkyzLUDyjoQtclk74ZUzITyWQK_nsr7d1czuZyLiEPnK04Z_ap2TQrwRhfWZCirq_IHdOGQV0rDTdkOU0HdgpYqQFuycd6pHhMcS4hjS7_0mGOJVSpPaAv4Yg0Ju8inTD-cxqpi33KoXwPtEuZ-nkqacBMi8s9ljD29-S6c3HC5aUX5Ot589m8Vtv3l7dmva0CZ7JUugUnlPHWCaOkd6AU97bdSyYQrdm3SoHTndACuFMMjWytdNxqCdYbj7Agj-fdgIi7nxyGk_3u_Bn-ACFKTYQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>YongSeog Kim</creator><creator>Street, W.N.</creator><creator>Menczer, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2001</creationdate><title>An evolutionary multi-objective local selection algorithm for customer targeting</title><author>YongSeog Kim ; Street, W.N. ; Menczer, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-7b3a258c9a2854ca3551c9bd402ee98db553a7f27231a50e84b94a197439c8ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Artificial neural networks</topic><topic>Cities and towns</topic><topic>Costs</topic><topic>Data engineering</topic><topic>Decision making</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Principal component analysis</topic><topic>Space exploration</topic><toplevel>online_resources</toplevel><creatorcontrib>YongSeog Kim</creatorcontrib><creatorcontrib>Street, W.N.</creatorcontrib><creatorcontrib>Menczer, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YongSeog Kim</au><au>Street, W.N.</au><au>Menczer, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An evolutionary multi-objective local selection algorithm for customer targeting</atitle><btitle>Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546)</btitle><stitle>CEC</stitle><date>2001</date><risdate>2001</risdate><volume>2</volume><spage>759</spage><epage>766 vol. 2</epage><pages>759-766 vol. 2</pages><isbn>0780366573</isbn><isbn>9780780366572</isbn><abstract>In an increasingly competitive marketplace, one of the most interesting and challenging problems is how to identify and profile customers who are most likely to be interested in new products or services. At the same time, minimizing the number of variables used in the prediction task is important with large databases. We consider a novel application of evolutionary multi-objective algorithms for customer targeting. Evolutionary algorithms are considered effective in solving multi-objective problems because of their inherent parallelism. We use ELSA, an evolutionary local selection algorithm that maintains a diverse population of solutions approximating the Pareto front in a multi-dimensional objective space. We use artificial neural networks (ANNs) for customer prediction and ELSA to search for promising subsets of features. Our results on a real data set show that our approach is easier to interpret and more accurate than the traditional method used in marketing.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2001.934266</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780366573
ispartof Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), 2001, Vol.2, p.759-766 vol. 2
issn
language eng
recordid cdi_ieee_primary_934266
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Cities and towns
Costs
Data engineering
Decision making
Humans
Neural networks
Principal component analysis
Space exploration
title An evolutionary multi-objective local selection algorithm for customer targeting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T05%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20evolutionary%20multi-objective%20local%20selection%20algorithm%20for%20customer%20targeting&rft.btitle=Proceedings%20of%20the%202001%20Congress%20on%20Evolutionary%20Computation%20(IEEE%20Cat.%20No.01TH8546)&rft.au=YongSeog%20Kim&rft.date=2001&rft.volume=2&rft.spage=759&rft.epage=766%20vol.%202&rft.pages=759-766%20vol.%202&rft.isbn=0780366573&rft.isbn_list=9780780366572&rft_id=info:doi/10.1109/CEC.2001.934266&rft_dat=%3Cieee_6IE%3E934266%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=934266&rfr_iscdi=true