An evolutionary multi-objective local selection algorithm for customer targeting
In an increasingly competitive marketplace, one of the most interesting and challenging problems is how to identify and profile customers who are most likely to be interested in new products or services. At the same time, minimizing the number of variables used in the prediction task is important wi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 766 vol. 2 |
---|---|
container_issue | |
container_start_page | 759 |
container_title | |
container_volume | 2 |
creator | YongSeog Kim Street, W.N. Menczer, F. |
description | In an increasingly competitive marketplace, one of the most interesting and challenging problems is how to identify and profile customers who are most likely to be interested in new products or services. At the same time, minimizing the number of variables used in the prediction task is important with large databases. We consider a novel application of evolutionary multi-objective algorithms for customer targeting. Evolutionary algorithms are considered effective in solving multi-objective problems because of their inherent parallelism. We use ELSA, an evolutionary local selection algorithm that maintains a diverse population of solutions approximating the Pareto front in a multi-dimensional objective space. We use artificial neural networks (ANNs) for customer prediction and ELSA to search for promising subsets of features. Our results on a real data set show that our approach is easier to interpret and more accurate than the traditional method used in marketing. |
doi_str_mv | 10.1109/CEC.2001.934266 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_934266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>934266</ieee_id><sourcerecordid>934266</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-7b3a258c9a2854ca3551c9bd402ee98db553a7f27231a50e84b94a197439c8ce3</originalsourceid><addsrcrecordid>eNotj01LAzEURQMiqLVrwVX-wNQkL5kkyzLUDyjoQtclk74ZUzITyWQK_nsr7d1czuZyLiEPnK04Z_ap2TQrwRhfWZCirq_IHdOGQV0rDTdkOU0HdgpYqQFuycd6pHhMcS4hjS7_0mGOJVSpPaAv4Yg0Ju8inTD-cxqpi33KoXwPtEuZ-nkqacBMi8s9ljD29-S6c3HC5aUX5Ot589m8Vtv3l7dmva0CZ7JUugUnlPHWCaOkd6AU97bdSyYQrdm3SoHTndACuFMMjWytdNxqCdYbj7Agj-fdgIi7nxyGk_3u_Bn-ACFKTYQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An evolutionary multi-objective local selection algorithm for customer targeting</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>YongSeog Kim ; Street, W.N. ; Menczer, F.</creator><creatorcontrib>YongSeog Kim ; Street, W.N. ; Menczer, F.</creatorcontrib><description>In an increasingly competitive marketplace, one of the most interesting and challenging problems is how to identify and profile customers who are most likely to be interested in new products or services. At the same time, minimizing the number of variables used in the prediction task is important with large databases. We consider a novel application of evolutionary multi-objective algorithms for customer targeting. Evolutionary algorithms are considered effective in solving multi-objective problems because of their inherent parallelism. We use ELSA, an evolutionary local selection algorithm that maintains a diverse population of solutions approximating the Pareto front in a multi-dimensional objective space. We use artificial neural networks (ANNs) for customer prediction and ELSA to search for promising subsets of features. Our results on a real data set show that our approach is easier to interpret and more accurate than the traditional method used in marketing.</description><identifier>ISBN: 0780366573</identifier><identifier>ISBN: 9780780366572</identifier><identifier>DOI: 10.1109/CEC.2001.934266</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Cities and towns ; Costs ; Data engineering ; Decision making ; Humans ; Neural networks ; Principal component analysis ; Space exploration</subject><ispartof>Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), 2001, Vol.2, p.759-766 vol. 2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/934266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/934266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>YongSeog Kim</creatorcontrib><creatorcontrib>Street, W.N.</creatorcontrib><creatorcontrib>Menczer, F.</creatorcontrib><title>An evolutionary multi-objective local selection algorithm for customer targeting</title><title>Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546)</title><addtitle>CEC</addtitle><description>In an increasingly competitive marketplace, one of the most interesting and challenging problems is how to identify and profile customers who are most likely to be interested in new products or services. At the same time, minimizing the number of variables used in the prediction task is important with large databases. We consider a novel application of evolutionary multi-objective algorithms for customer targeting. Evolutionary algorithms are considered effective in solving multi-objective problems because of their inherent parallelism. We use ELSA, an evolutionary local selection algorithm that maintains a diverse population of solutions approximating the Pareto front in a multi-dimensional objective space. We use artificial neural networks (ANNs) for customer prediction and ELSA to search for promising subsets of features. Our results on a real data set show that our approach is easier to interpret and more accurate than the traditional method used in marketing.</description><subject>Artificial neural networks</subject><subject>Cities and towns</subject><subject>Costs</subject><subject>Data engineering</subject><subject>Decision making</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Principal component analysis</subject><subject>Space exploration</subject><isbn>0780366573</isbn><isbn>9780780366572</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LAzEURQMiqLVrwVX-wNQkL5kkyzLUDyjoQtclk74ZUzITyWQK_nsr7d1czuZyLiEPnK04Z_ap2TQrwRhfWZCirq_IHdOGQV0rDTdkOU0HdgpYqQFuycd6pHhMcS4hjS7_0mGOJVSpPaAv4Yg0Ju8inTD-cxqpi33KoXwPtEuZ-nkqacBMi8s9ljD29-S6c3HC5aUX5Ot589m8Vtv3l7dmva0CZ7JUugUnlPHWCaOkd6AU97bdSyYQrdm3SoHTndACuFMMjWytdNxqCdYbj7Agj-fdgIi7nxyGk_3u_Bn-ACFKTYQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>YongSeog Kim</creator><creator>Street, W.N.</creator><creator>Menczer, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2001</creationdate><title>An evolutionary multi-objective local selection algorithm for customer targeting</title><author>YongSeog Kim ; Street, W.N. ; Menczer, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-7b3a258c9a2854ca3551c9bd402ee98db553a7f27231a50e84b94a197439c8ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Artificial neural networks</topic><topic>Cities and towns</topic><topic>Costs</topic><topic>Data engineering</topic><topic>Decision making</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Principal component analysis</topic><topic>Space exploration</topic><toplevel>online_resources</toplevel><creatorcontrib>YongSeog Kim</creatorcontrib><creatorcontrib>Street, W.N.</creatorcontrib><creatorcontrib>Menczer, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YongSeog Kim</au><au>Street, W.N.</au><au>Menczer, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An evolutionary multi-objective local selection algorithm for customer targeting</atitle><btitle>Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546)</btitle><stitle>CEC</stitle><date>2001</date><risdate>2001</risdate><volume>2</volume><spage>759</spage><epage>766 vol. 2</epage><pages>759-766 vol. 2</pages><isbn>0780366573</isbn><isbn>9780780366572</isbn><abstract>In an increasingly competitive marketplace, one of the most interesting and challenging problems is how to identify and profile customers who are most likely to be interested in new products or services. At the same time, minimizing the number of variables used in the prediction task is important with large databases. We consider a novel application of evolutionary multi-objective algorithms for customer targeting. Evolutionary algorithms are considered effective in solving multi-objective problems because of their inherent parallelism. We use ELSA, an evolutionary local selection algorithm that maintains a diverse population of solutions approximating the Pareto front in a multi-dimensional objective space. We use artificial neural networks (ANNs) for customer prediction and ELSA to search for promising subsets of features. Our results on a real data set show that our approach is easier to interpret and more accurate than the traditional method used in marketing.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2001.934266</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780366573 |
ispartof | Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), 2001, Vol.2, p.759-766 vol. 2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_934266 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Cities and towns Costs Data engineering Decision making Humans Neural networks Principal component analysis Space exploration |
title | An evolutionary multi-objective local selection algorithm for customer targeting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T05%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20evolutionary%20multi-objective%20local%20selection%20algorithm%20for%20customer%20targeting&rft.btitle=Proceedings%20of%20the%202001%20Congress%20on%20Evolutionary%20Computation%20(IEEE%20Cat.%20No.01TH8546)&rft.au=YongSeog%20Kim&rft.date=2001&rft.volume=2&rft.spage=759&rft.epage=766%20vol.%202&rft.pages=759-766%20vol.%202&rft.isbn=0780366573&rft.isbn_list=9780780366572&rft_id=info:doi/10.1109/CEC.2001.934266&rft_dat=%3Cieee_6IE%3E934266%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=934266&rfr_iscdi=true |