Achieving Privacy-Preserving and Lightweight Truth Discovery in Mobile Crowdsensing

To obtain reliable results from conflicting data in mobile crowdsensing, numerous truth discovery protocols have been proposed in the past decade. However, most of them do not consider the data privacy of entities involved (e.g., workers and servers), and several existing privacy-preserving truth di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2022-11, Vol.34 (11), p.5140-5153
Hauptverfasser: Tang, Jianchao, Fu, Shaojing, Liu, Ximeng, Luo, Yuchuan, Xu, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5153
container_issue 11
container_start_page 5140
container_title IEEE transactions on knowledge and data engineering
container_volume 34
creator Tang, Jianchao
Fu, Shaojing
Liu, Ximeng
Luo, Yuchuan
Xu, Ming
description To obtain reliable results from conflicting data in mobile crowdsensing, numerous truth discovery protocols have been proposed in the past decade. However, most of them do not consider the data privacy of entities involved (e.g., workers and servers), and several existing privacy-preserving truth discovery protocols either provide limited privacy protection or have heavy computation and communication overheads due to iterative computation and transmission over large ciphertexts. In this paper, we aim to propose privacy-preserving and lightweight truth discovery protocols to tackle the above problems. Specifically, we carefully design an anonymization protocol named AnonymTD to delink workers from their data, where workers' data are computed and transmitted without complicated encryption. To further reduce each worker's overheads in the scenarios where workers are willing to share their weights, we resort to the perturbation technology to propose a more lightweight truth discovery protocol named PerturbTD. Based on workers' perturbed data, two cloud servers in PerturbTD complete most of the workload of truth discovery together, which avoids the frequent involvement of workers. The theoretical analysis and the comparative experiments in this paper demonstrate that our two protocols can achieve our security goals with low computation and communication overheads.
doi_str_mv 10.1109/TKDE.2021.3054409
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9340556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9340556</ieee_id><sourcerecordid>2722549951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8014a815e4ede9fac7f856977676bcf31b94fa6804b5eeb5583ae176040b8bb03</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujiYh-AONlE8-LnW27bY8E8E_ESCKem3aZhRLcxXaB8O3dFeNlZjJ5b17mR8gt0AEA1Q_z1_FkkNEMBowKzqk-Iz0QQqUZaDhvZ8oh5YzLS3IV45pSqqSCHvkYFiuPe18tk1nwe1sc01nAiOF3ZatFMvXLVXPAribzsGtWydjHot5jOCa-St5q5zeYjEJ9WESsYmu7Jhel3US8-et98vk4mY-e0-n708toOE2LTLMmVRS4VSCQ4wJ1aQtZKpFrKXOZu6Jk4DQvba4odwLRtc8wiyBzyqlTzlHWJ_enu9tQf-8wNmZd70LVRppMZpngWgtoVXBSFaGOMWBptsF_2XA0QE3HznTsTMfO_LFrPXcnj0fEf71mnAqRsx_552ro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722549951</pqid></control><display><type>article</type><title>Achieving Privacy-Preserving and Lightweight Truth Discovery in Mobile Crowdsensing</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Jianchao ; Fu, Shaojing ; Liu, Ximeng ; Luo, Yuchuan ; Xu, Ming</creator><creatorcontrib>Tang, Jianchao ; Fu, Shaojing ; Liu, Ximeng ; Luo, Yuchuan ; Xu, Ming</creatorcontrib><description>To obtain reliable results from conflicting data in mobile crowdsensing, numerous truth discovery protocols have been proposed in the past decade. However, most of them do not consider the data privacy of entities involved (e.g., workers and servers), and several existing privacy-preserving truth discovery protocols either provide limited privacy protection or have heavy computation and communication overheads due to iterative computation and transmission over large ciphertexts. In this paper, we aim to propose privacy-preserving and lightweight truth discovery protocols to tackle the above problems. Specifically, we carefully design an anonymization protocol named AnonymTD to delink workers from their data, where workers' data are computed and transmitted without complicated encryption. To further reduce each worker's overheads in the scenarios where workers are willing to share their weights, we resort to the perturbation technology to propose a more lightweight truth discovery protocol named PerturbTD. Based on workers' perturbed data, two cloud servers in PerturbTD complete most of the workload of truth discovery together, which avoids the frequent involvement of workers. The theoretical analysis and the comparative experiments in this paper demonstrate that our two protocols can achieve our security goals with low computation and communication overheads.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2021.3054409</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; anonymization ; Cloud computing ; Crowdsensing ; Encryption ; Iterative methods ; Lightweight ; mobile crowdsensing ; Perturbation ; Privacy ; Protocols ; Reliability ; Servers ; Task analysis ; truth discovery ; Workers</subject><ispartof>IEEE transactions on knowledge and data engineering, 2022-11, Vol.34 (11), p.5140-5153</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8014a815e4ede9fac7f856977676bcf31b94fa6804b5eeb5583ae176040b8bb03</citedby><cites>FETCH-LOGICAL-c293t-8014a815e4ede9fac7f856977676bcf31b94fa6804b5eeb5583ae176040b8bb03</cites><orcidid>0000-0002-4238-3295 ; 0000-0002-7275-8190 ; 0000-0002-0720-4925 ; 0000-0002-5162-2817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9340556$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9340556$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Jianchao</creatorcontrib><creatorcontrib>Fu, Shaojing</creatorcontrib><creatorcontrib>Liu, Ximeng</creatorcontrib><creatorcontrib>Luo, Yuchuan</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><title>Achieving Privacy-Preserving and Lightweight Truth Discovery in Mobile Crowdsensing</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>To obtain reliable results from conflicting data in mobile crowdsensing, numerous truth discovery protocols have been proposed in the past decade. However, most of them do not consider the data privacy of entities involved (e.g., workers and servers), and several existing privacy-preserving truth discovery protocols either provide limited privacy protection or have heavy computation and communication overheads due to iterative computation and transmission over large ciphertexts. In this paper, we aim to propose privacy-preserving and lightweight truth discovery protocols to tackle the above problems. Specifically, we carefully design an anonymization protocol named AnonymTD to delink workers from their data, where workers' data are computed and transmitted without complicated encryption. To further reduce each worker's overheads in the scenarios where workers are willing to share their weights, we resort to the perturbation technology to propose a more lightweight truth discovery protocol named PerturbTD. Based on workers' perturbed data, two cloud servers in PerturbTD complete most of the workload of truth discovery together, which avoids the frequent involvement of workers. The theoretical analysis and the comparative experiments in this paper demonstrate that our two protocols can achieve our security goals with low computation and communication overheads.</description><subject>Algorithms</subject><subject>anonymization</subject><subject>Cloud computing</subject><subject>Crowdsensing</subject><subject>Encryption</subject><subject>Iterative methods</subject><subject>Lightweight</subject><subject>mobile crowdsensing</subject><subject>Perturbation</subject><subject>Privacy</subject><subject>Protocols</subject><subject>Reliability</subject><subject>Servers</subject><subject>Task analysis</subject><subject>truth discovery</subject><subject>Workers</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxRujiYh-AONlE8-LnW27bY8E8E_ESCKem3aZhRLcxXaB8O3dFeNlZjJ5b17mR8gt0AEA1Q_z1_FkkNEMBowKzqk-Iz0QQqUZaDhvZ8oh5YzLS3IV45pSqqSCHvkYFiuPe18tk1nwe1sc01nAiOF3ZatFMvXLVXPAribzsGtWydjHot5jOCa-St5q5zeYjEJ9WESsYmu7Jhel3US8-et98vk4mY-e0-n708toOE2LTLMmVRS4VSCQ4wJ1aQtZKpFrKXOZu6Jk4DQvba4odwLRtc8wiyBzyqlTzlHWJ_enu9tQf-8wNmZd70LVRppMZpngWgtoVXBSFaGOMWBptsF_2XA0QE3HznTsTMfO_LFrPXcnj0fEf71mnAqRsx_552ro</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Tang, Jianchao</creator><creator>Fu, Shaojing</creator><creator>Liu, Ximeng</creator><creator>Luo, Yuchuan</creator><creator>Xu, Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4238-3295</orcidid><orcidid>https://orcid.org/0000-0002-7275-8190</orcidid><orcidid>https://orcid.org/0000-0002-0720-4925</orcidid><orcidid>https://orcid.org/0000-0002-5162-2817</orcidid></search><sort><creationdate>20221101</creationdate><title>Achieving Privacy-Preserving and Lightweight Truth Discovery in Mobile Crowdsensing</title><author>Tang, Jianchao ; Fu, Shaojing ; Liu, Ximeng ; Luo, Yuchuan ; Xu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8014a815e4ede9fac7f856977676bcf31b94fa6804b5eeb5583ae176040b8bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>anonymization</topic><topic>Cloud computing</topic><topic>Crowdsensing</topic><topic>Encryption</topic><topic>Iterative methods</topic><topic>Lightweight</topic><topic>mobile crowdsensing</topic><topic>Perturbation</topic><topic>Privacy</topic><topic>Protocols</topic><topic>Reliability</topic><topic>Servers</topic><topic>Task analysis</topic><topic>truth discovery</topic><topic>Workers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Jianchao</creatorcontrib><creatorcontrib>Fu, Shaojing</creatorcontrib><creatorcontrib>Liu, Ximeng</creatorcontrib><creatorcontrib>Luo, Yuchuan</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Jianchao</au><au>Fu, Shaojing</au><au>Liu, Ximeng</au><au>Luo, Yuchuan</au><au>Xu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving Privacy-Preserving and Lightweight Truth Discovery in Mobile Crowdsensing</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>34</volume><issue>11</issue><spage>5140</spage><epage>5153</epage><pages>5140-5153</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>To obtain reliable results from conflicting data in mobile crowdsensing, numerous truth discovery protocols have been proposed in the past decade. However, most of them do not consider the data privacy of entities involved (e.g., workers and servers), and several existing privacy-preserving truth discovery protocols either provide limited privacy protection or have heavy computation and communication overheads due to iterative computation and transmission over large ciphertexts. In this paper, we aim to propose privacy-preserving and lightweight truth discovery protocols to tackle the above problems. Specifically, we carefully design an anonymization protocol named AnonymTD to delink workers from their data, where workers' data are computed and transmitted without complicated encryption. To further reduce each worker's overheads in the scenarios where workers are willing to share their weights, we resort to the perturbation technology to propose a more lightweight truth discovery protocol named PerturbTD. Based on workers' perturbed data, two cloud servers in PerturbTD complete most of the workload of truth discovery together, which avoids the frequent involvement of workers. The theoretical analysis and the comparative experiments in this paper demonstrate that our two protocols can achieve our security goals with low computation and communication overheads.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2021.3054409</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4238-3295</orcidid><orcidid>https://orcid.org/0000-0002-7275-8190</orcidid><orcidid>https://orcid.org/0000-0002-0720-4925</orcidid><orcidid>https://orcid.org/0000-0002-5162-2817</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2022-11, Vol.34 (11), p.5140-5153
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_9340556
source IEEE Electronic Library (IEL)
subjects Algorithms
anonymization
Cloud computing
Crowdsensing
Encryption
Iterative methods
Lightweight
mobile crowdsensing
Perturbation
Privacy
Protocols
Reliability
Servers
Task analysis
truth discovery
Workers
title Achieving Privacy-Preserving and Lightweight Truth Discovery in Mobile Crowdsensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20Privacy-Preserving%20and%20Lightweight%20Truth%20Discovery%20in%20Mobile%20Crowdsensing&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Tang,%20Jianchao&rft.date=2022-11-01&rft.volume=34&rft.issue=11&rft.spage=5140&rft.epage=5153&rft.pages=5140-5153&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2021.3054409&rft_dat=%3Cproquest_RIE%3E2722549951%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722549951&rft_id=info:pmid/&rft_ieee_id=9340556&rfr_iscdi=true