Achieving Privacy-Preserving and Lightweight Truth Discovery in Mobile Crowdsensing
To obtain reliable results from conflicting data in mobile crowdsensing, numerous truth discovery protocols have been proposed in the past decade. However, most of them do not consider the data privacy of entities involved (e.g., workers and servers), and several existing privacy-preserving truth di...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2022-11, Vol.34 (11), p.5140-5153 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5153 |
---|---|
container_issue | 11 |
container_start_page | 5140 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 34 |
creator | Tang, Jianchao Fu, Shaojing Liu, Ximeng Luo, Yuchuan Xu, Ming |
description | To obtain reliable results from conflicting data in mobile crowdsensing, numerous truth discovery protocols have been proposed in the past decade. However, most of them do not consider the data privacy of entities involved (e.g., workers and servers), and several existing privacy-preserving truth discovery protocols either provide limited privacy protection or have heavy computation and communication overheads due to iterative computation and transmission over large ciphertexts. In this paper, we aim to propose privacy-preserving and lightweight truth discovery protocols to tackle the above problems. Specifically, we carefully design an anonymization protocol named AnonymTD to delink workers from their data, where workers' data are computed and transmitted without complicated encryption. To further reduce each worker's overheads in the scenarios where workers are willing to share their weights, we resort to the perturbation technology to propose a more lightweight truth discovery protocol named PerturbTD. Based on workers' perturbed data, two cloud servers in PerturbTD complete most of the workload of truth discovery together, which avoids the frequent involvement of workers. The theoretical analysis and the comparative experiments in this paper demonstrate that our two protocols can achieve our security goals with low computation and communication overheads. |
doi_str_mv | 10.1109/TKDE.2021.3054409 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9340556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9340556</ieee_id><sourcerecordid>2722549951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8014a815e4ede9fac7f856977676bcf31b94fa6804b5eeb5583ae176040b8bb03</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujiYh-AONlE8-LnW27bY8E8E_ESCKem3aZhRLcxXaB8O3dFeNlZjJ5b17mR8gt0AEA1Q_z1_FkkNEMBowKzqk-Iz0QQqUZaDhvZ8oh5YzLS3IV45pSqqSCHvkYFiuPe18tk1nwe1sc01nAiOF3ZatFMvXLVXPAribzsGtWydjHot5jOCa-St5q5zeYjEJ9WESsYmu7Jhel3US8-et98vk4mY-e0-n708toOE2LTLMmVRS4VSCQ4wJ1aQtZKpFrKXOZu6Jk4DQvba4odwLRtc8wiyBzyqlTzlHWJ_enu9tQf-8wNmZd70LVRppMZpngWgtoVXBSFaGOMWBptsF_2XA0QE3HznTsTMfO_LFrPXcnj0fEf71mnAqRsx_552ro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722549951</pqid></control><display><type>article</type><title>Achieving Privacy-Preserving and Lightweight Truth Discovery in Mobile Crowdsensing</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Jianchao ; Fu, Shaojing ; Liu, Ximeng ; Luo, Yuchuan ; Xu, Ming</creator><creatorcontrib>Tang, Jianchao ; Fu, Shaojing ; Liu, Ximeng ; Luo, Yuchuan ; Xu, Ming</creatorcontrib><description>To obtain reliable results from conflicting data in mobile crowdsensing, numerous truth discovery protocols have been proposed in the past decade. However, most of them do not consider the data privacy of entities involved (e.g., workers and servers), and several existing privacy-preserving truth discovery protocols either provide limited privacy protection or have heavy computation and communication overheads due to iterative computation and transmission over large ciphertexts. In this paper, we aim to propose privacy-preserving and lightweight truth discovery protocols to tackle the above problems. Specifically, we carefully design an anonymization protocol named AnonymTD to delink workers from their data, where workers' data are computed and transmitted without complicated encryption. To further reduce each worker's overheads in the scenarios where workers are willing to share their weights, we resort to the perturbation technology to propose a more lightweight truth discovery protocol named PerturbTD. Based on workers' perturbed data, two cloud servers in PerturbTD complete most of the workload of truth discovery together, which avoids the frequent involvement of workers. The theoretical analysis and the comparative experiments in this paper demonstrate that our two protocols can achieve our security goals with low computation and communication overheads.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2021.3054409</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; anonymization ; Cloud computing ; Crowdsensing ; Encryption ; Iterative methods ; Lightweight ; mobile crowdsensing ; Perturbation ; Privacy ; Protocols ; Reliability ; Servers ; Task analysis ; truth discovery ; Workers</subject><ispartof>IEEE transactions on knowledge and data engineering, 2022-11, Vol.34 (11), p.5140-5153</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8014a815e4ede9fac7f856977676bcf31b94fa6804b5eeb5583ae176040b8bb03</citedby><cites>FETCH-LOGICAL-c293t-8014a815e4ede9fac7f856977676bcf31b94fa6804b5eeb5583ae176040b8bb03</cites><orcidid>0000-0002-4238-3295 ; 0000-0002-7275-8190 ; 0000-0002-0720-4925 ; 0000-0002-5162-2817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9340556$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9340556$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Jianchao</creatorcontrib><creatorcontrib>Fu, Shaojing</creatorcontrib><creatorcontrib>Liu, Ximeng</creatorcontrib><creatorcontrib>Luo, Yuchuan</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><title>Achieving Privacy-Preserving and Lightweight Truth Discovery in Mobile Crowdsensing</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>To obtain reliable results from conflicting data in mobile crowdsensing, numerous truth discovery protocols have been proposed in the past decade. However, most of them do not consider the data privacy of entities involved (e.g., workers and servers), and several existing privacy-preserving truth discovery protocols either provide limited privacy protection or have heavy computation and communication overheads due to iterative computation and transmission over large ciphertexts. In this paper, we aim to propose privacy-preserving and lightweight truth discovery protocols to tackle the above problems. Specifically, we carefully design an anonymization protocol named AnonymTD to delink workers from their data, where workers' data are computed and transmitted without complicated encryption. To further reduce each worker's overheads in the scenarios where workers are willing to share their weights, we resort to the perturbation technology to propose a more lightweight truth discovery protocol named PerturbTD. Based on workers' perturbed data, two cloud servers in PerturbTD complete most of the workload of truth discovery together, which avoids the frequent involvement of workers. The theoretical analysis and the comparative experiments in this paper demonstrate that our two protocols can achieve our security goals with low computation and communication overheads.</description><subject>Algorithms</subject><subject>anonymization</subject><subject>Cloud computing</subject><subject>Crowdsensing</subject><subject>Encryption</subject><subject>Iterative methods</subject><subject>Lightweight</subject><subject>mobile crowdsensing</subject><subject>Perturbation</subject><subject>Privacy</subject><subject>Protocols</subject><subject>Reliability</subject><subject>Servers</subject><subject>Task analysis</subject><subject>truth discovery</subject><subject>Workers</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxRujiYh-AONlE8-LnW27bY8E8E_ESCKem3aZhRLcxXaB8O3dFeNlZjJ5b17mR8gt0AEA1Q_z1_FkkNEMBowKzqk-Iz0QQqUZaDhvZ8oh5YzLS3IV45pSqqSCHvkYFiuPe18tk1nwe1sc01nAiOF3ZatFMvXLVXPAribzsGtWydjHot5jOCa-St5q5zeYjEJ9WESsYmu7Jhel3US8-et98vk4mY-e0-n708toOE2LTLMmVRS4VSCQ4wJ1aQtZKpFrKXOZu6Jk4DQvba4odwLRtc8wiyBzyqlTzlHWJ_enu9tQf-8wNmZd70LVRppMZpngWgtoVXBSFaGOMWBptsF_2XA0QE3HznTsTMfO_LFrPXcnj0fEf71mnAqRsx_552ro</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Tang, Jianchao</creator><creator>Fu, Shaojing</creator><creator>Liu, Ximeng</creator><creator>Luo, Yuchuan</creator><creator>Xu, Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4238-3295</orcidid><orcidid>https://orcid.org/0000-0002-7275-8190</orcidid><orcidid>https://orcid.org/0000-0002-0720-4925</orcidid><orcidid>https://orcid.org/0000-0002-5162-2817</orcidid></search><sort><creationdate>20221101</creationdate><title>Achieving Privacy-Preserving and Lightweight Truth Discovery in Mobile Crowdsensing</title><author>Tang, Jianchao ; Fu, Shaojing ; Liu, Ximeng ; Luo, Yuchuan ; Xu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8014a815e4ede9fac7f856977676bcf31b94fa6804b5eeb5583ae176040b8bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>anonymization</topic><topic>Cloud computing</topic><topic>Crowdsensing</topic><topic>Encryption</topic><topic>Iterative methods</topic><topic>Lightweight</topic><topic>mobile crowdsensing</topic><topic>Perturbation</topic><topic>Privacy</topic><topic>Protocols</topic><topic>Reliability</topic><topic>Servers</topic><topic>Task analysis</topic><topic>truth discovery</topic><topic>Workers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Jianchao</creatorcontrib><creatorcontrib>Fu, Shaojing</creatorcontrib><creatorcontrib>Liu, Ximeng</creatorcontrib><creatorcontrib>Luo, Yuchuan</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Jianchao</au><au>Fu, Shaojing</au><au>Liu, Ximeng</au><au>Luo, Yuchuan</au><au>Xu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving Privacy-Preserving and Lightweight Truth Discovery in Mobile Crowdsensing</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>34</volume><issue>11</issue><spage>5140</spage><epage>5153</epage><pages>5140-5153</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>To obtain reliable results from conflicting data in mobile crowdsensing, numerous truth discovery protocols have been proposed in the past decade. However, most of them do not consider the data privacy of entities involved (e.g., workers and servers), and several existing privacy-preserving truth discovery protocols either provide limited privacy protection or have heavy computation and communication overheads due to iterative computation and transmission over large ciphertexts. In this paper, we aim to propose privacy-preserving and lightweight truth discovery protocols to tackle the above problems. Specifically, we carefully design an anonymization protocol named AnonymTD to delink workers from their data, where workers' data are computed and transmitted without complicated encryption. To further reduce each worker's overheads in the scenarios where workers are willing to share their weights, we resort to the perturbation technology to propose a more lightweight truth discovery protocol named PerturbTD. Based on workers' perturbed data, two cloud servers in PerturbTD complete most of the workload of truth discovery together, which avoids the frequent involvement of workers. The theoretical analysis and the comparative experiments in this paper demonstrate that our two protocols can achieve our security goals with low computation and communication overheads.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2021.3054409</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4238-3295</orcidid><orcidid>https://orcid.org/0000-0002-7275-8190</orcidid><orcidid>https://orcid.org/0000-0002-0720-4925</orcidid><orcidid>https://orcid.org/0000-0002-5162-2817</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2022-11, Vol.34 (11), p.5140-5153 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_ieee_primary_9340556 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms anonymization Cloud computing Crowdsensing Encryption Iterative methods Lightweight mobile crowdsensing Perturbation Privacy Protocols Reliability Servers Task analysis truth discovery Workers |
title | Achieving Privacy-Preserving and Lightweight Truth Discovery in Mobile Crowdsensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20Privacy-Preserving%20and%20Lightweight%20Truth%20Discovery%20in%20Mobile%20Crowdsensing&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Tang,%20Jianchao&rft.date=2022-11-01&rft.volume=34&rft.issue=11&rft.spage=5140&rft.epage=5153&rft.pages=5140-5153&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2021.3054409&rft_dat=%3Cproquest_RIE%3E2722549951%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722549951&rft_id=info:pmid/&rft_ieee_id=9340556&rfr_iscdi=true |