TagAttention: Mobile Object Tracing With Zero Appearance Knowledge by Vision-RFID Fusion

We propose to study mobile object tracing, which allows a mobile system to report the shape, location, and trajectory of the mobile objects appearing in a video camera and identifies each of them with its cyber-identity (ID), even if the appearances of the objects are not known to the system. Existi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2021-04, Vol.29 (2), p.890-903
Hauptverfasser: Shi, Xiaofeng, Cai, Haofan, Wang, Minmei, Wang, Ge, Huang, Baiwen, Xie, Junjie, Qian, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 903
container_issue 2
container_start_page 890
container_title IEEE/ACM transactions on networking
container_volume 29
creator Shi, Xiaofeng
Cai, Haofan
Wang, Minmei
Wang, Ge
Huang, Baiwen
Xie, Junjie
Qian, Chen
description We propose to study mobile object tracing, which allows a mobile system to report the shape, location, and trajectory of the mobile objects appearing in a video camera and identifies each of them with its cyber-identity (ID), even if the appearances of the objects are not known to the system. Existing tracking methods either cannot match objects with their cyber-IDs or rely on complex vision modules pre-learned from vast and well-annotated datasets including the appearances of the target objects, which may not exist in practice. We design and implement TagAttention, a vision-RFID fusion system that achieves mobile object tracing without the knowledge of the target object appearances and hence can be used in many applications that need to track arbitrary un-registered objects. TagAttention adopts the visual attention mechanism, through which RF signals can direct the visual system to detect and track target objects with unknown appearances. Experiments show TagAttention can actively discover, identify, and track the target objects while matching them with their cyber-IDs by using commercial sensing devices in complex environments with various multipath reflectors. It only requires around one second to detect and localize a new mobile target appearing in the video and keeps tracking it accurately over time.
doi_str_mv 10.1109/TNET.2021.3052805
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9336310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9336310</ieee_id><sourcerecordid>2515744894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7e006d1b5a1a588f8bdad2c029805c36092ea755acd8d323dd7d44efa14fe52b3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6u5vdJN5KbbVYLUj8wMuy2Z3UlJrETYr035vQ4mnew_vMMA8hlwxGjEFykz5P0xEHzkYCJI9BHpEBkzIOuFTquMugRKBUwk_JWdOsAZgArgbkIzWrcdti2RZVeUufqqzYIF1ma7QtTb2xRbmi70X7RT_RV3Rc12i8KS3Sx7L63aBbIc129K1oOj54mc3v6Gzb53NykptNgxeHOSSvs2k6eQgWy_v5ZLwILE9EG0QIoBzLpGFGxnEeZ844boEn3Q9WKEg4mkhKY13sBBfORS4MMTcszFHyTAzJ9X5v7aufLTatXldbX3YnNZdMRmEYJ2HXYvuW9VXTeMx17Ytv43eage4F6l6g7gXqg8COudozBSL-9xMhlGAg_gA8CGvC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515744894</pqid></control><display><type>article</type><title>TagAttention: Mobile Object Tracing With Zero Appearance Knowledge by Vision-RFID Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Xiaofeng ; Cai, Haofan ; Wang, Minmei ; Wang, Ge ; Huang, Baiwen ; Xie, Junjie ; Qian, Chen</creator><creatorcontrib>Shi, Xiaofeng ; Cai, Haofan ; Wang, Minmei ; Wang, Ge ; Huang, Baiwen ; Xie, Junjie ; Qian, Chen</creatorcontrib><description>We propose to study mobile object tracing, which allows a mobile system to report the shape, location, and trajectory of the mobile objects appearing in a video camera and identifies each of them with its cyber-identity (ID), even if the appearances of the objects are not known to the system. Existing tracking methods either cannot match objects with their cyber-IDs or rely on complex vision modules pre-learned from vast and well-annotated datasets including the appearances of the target objects, which may not exist in practice. We design and implement TagAttention, a vision-RFID fusion system that achieves mobile object tracing without the knowledge of the target object appearances and hence can be used in many applications that need to track arbitrary un-registered objects. TagAttention adopts the visual attention mechanism, through which RF signals can direct the visual system to detect and track target objects with unknown appearances. Experiments show TagAttention can actively discover, identify, and track the target objects while matching them with their cyber-IDs by using commercial sensing devices in complex environments with various multipath reflectors. It only requires around one second to detect and localize a new mobile target appearing in the video and keeps tracking it accurately over time.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2021.3052805</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Computer vision ; mobile tracing ; Object recognition ; perception fusion ; Radio frequency identification ; Radio-frequency identification (RFID) ; Reflectors ; sensing ; Sensors ; Target detection ; Target recognition ; Target tracking ; Tracing ; Tracking ; Visual signals ; Visualization ; Wireless communication</subject><ispartof>IEEE/ACM transactions on networking, 2021-04, Vol.29 (2), p.890-903</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7e006d1b5a1a588f8bdad2c029805c36092ea755acd8d323dd7d44efa14fe52b3</citedby><cites>FETCH-LOGICAL-c293t-7e006d1b5a1a588f8bdad2c029805c36092ea755acd8d323dd7d44efa14fe52b3</cites><orcidid>0000-0002-8784-0031 ; 0000-0003-2352-2816 ; 0000-0002-3845-1646 ; 0000-0001-6362-7669 ; 0000-0002-0523-440X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9336310$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9336310$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi, Xiaofeng</creatorcontrib><creatorcontrib>Cai, Haofan</creatorcontrib><creatorcontrib>Wang, Minmei</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Huang, Baiwen</creatorcontrib><creatorcontrib>Xie, Junjie</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><title>TagAttention: Mobile Object Tracing With Zero Appearance Knowledge by Vision-RFID Fusion</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>We propose to study mobile object tracing, which allows a mobile system to report the shape, location, and trajectory of the mobile objects appearing in a video camera and identifies each of them with its cyber-identity (ID), even if the appearances of the objects are not known to the system. Existing tracking methods either cannot match objects with their cyber-IDs or rely on complex vision modules pre-learned from vast and well-annotated datasets including the appearances of the target objects, which may not exist in practice. We design and implement TagAttention, a vision-RFID fusion system that achieves mobile object tracing without the knowledge of the target object appearances and hence can be used in many applications that need to track arbitrary un-registered objects. TagAttention adopts the visual attention mechanism, through which RF signals can direct the visual system to detect and track target objects with unknown appearances. Experiments show TagAttention can actively discover, identify, and track the target objects while matching them with their cyber-IDs by using commercial sensing devices in complex environments with various multipath reflectors. It only requires around one second to detect and localize a new mobile target appearing in the video and keeps tracking it accurately over time.</description><subject>Cameras</subject><subject>Computer vision</subject><subject>mobile tracing</subject><subject>Object recognition</subject><subject>perception fusion</subject><subject>Radio frequency identification</subject><subject>Radio-frequency identification (RFID)</subject><subject>Reflectors</subject><subject>sensing</subject><subject>Sensors</subject><subject>Target detection</subject><subject>Target recognition</subject><subject>Target tracking</subject><subject>Tracing</subject><subject>Tracking</subject><subject>Visual signals</subject><subject>Visualization</subject><subject>Wireless communication</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6u5vdJN5KbbVYLUj8wMuy2Z3UlJrETYr035vQ4mnew_vMMA8hlwxGjEFykz5P0xEHzkYCJI9BHpEBkzIOuFTquMugRKBUwk_JWdOsAZgArgbkIzWrcdti2RZVeUufqqzYIF1ma7QtTb2xRbmi70X7RT_RV3Rc12i8KS3Sx7L63aBbIc129K1oOj54mc3v6Gzb53NykptNgxeHOSSvs2k6eQgWy_v5ZLwILE9EG0QIoBzLpGFGxnEeZ844boEn3Q9WKEg4mkhKY13sBBfORS4MMTcszFHyTAzJ9X5v7aufLTatXldbX3YnNZdMRmEYJ2HXYvuW9VXTeMx17Ytv43eage4F6l6g7gXqg8COudozBSL-9xMhlGAg_gA8CGvC</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Shi, Xiaofeng</creator><creator>Cai, Haofan</creator><creator>Wang, Minmei</creator><creator>Wang, Ge</creator><creator>Huang, Baiwen</creator><creator>Xie, Junjie</creator><creator>Qian, Chen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8784-0031</orcidid><orcidid>https://orcid.org/0000-0003-2352-2816</orcidid><orcidid>https://orcid.org/0000-0002-3845-1646</orcidid><orcidid>https://orcid.org/0000-0001-6362-7669</orcidid><orcidid>https://orcid.org/0000-0002-0523-440X</orcidid></search><sort><creationdate>202104</creationdate><title>TagAttention: Mobile Object Tracing With Zero Appearance Knowledge by Vision-RFID Fusion</title><author>Shi, Xiaofeng ; Cai, Haofan ; Wang, Minmei ; Wang, Ge ; Huang, Baiwen ; Xie, Junjie ; Qian, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7e006d1b5a1a588f8bdad2c029805c36092ea755acd8d323dd7d44efa14fe52b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cameras</topic><topic>Computer vision</topic><topic>mobile tracing</topic><topic>Object recognition</topic><topic>perception fusion</topic><topic>Radio frequency identification</topic><topic>Radio-frequency identification (RFID)</topic><topic>Reflectors</topic><topic>sensing</topic><topic>Sensors</topic><topic>Target detection</topic><topic>Target recognition</topic><topic>Target tracking</topic><topic>Tracing</topic><topic>Tracking</topic><topic>Visual signals</topic><topic>Visualization</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xiaofeng</creatorcontrib><creatorcontrib>Cai, Haofan</creatorcontrib><creatorcontrib>Wang, Minmei</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Huang, Baiwen</creatorcontrib><creatorcontrib>Xie, Junjie</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Xiaofeng</au><au>Cai, Haofan</au><au>Wang, Minmei</au><au>Wang, Ge</au><au>Huang, Baiwen</au><au>Xie, Junjie</au><au>Qian, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TagAttention: Mobile Object Tracing With Zero Appearance Knowledge by Vision-RFID Fusion</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2021-04</date><risdate>2021</risdate><volume>29</volume><issue>2</issue><spage>890</spage><epage>903</epage><pages>890-903</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>We propose to study mobile object tracing, which allows a mobile system to report the shape, location, and trajectory of the mobile objects appearing in a video camera and identifies each of them with its cyber-identity (ID), even if the appearances of the objects are not known to the system. Existing tracking methods either cannot match objects with their cyber-IDs or rely on complex vision modules pre-learned from vast and well-annotated datasets including the appearances of the target objects, which may not exist in practice. We design and implement TagAttention, a vision-RFID fusion system that achieves mobile object tracing without the knowledge of the target object appearances and hence can be used in many applications that need to track arbitrary un-registered objects. TagAttention adopts the visual attention mechanism, through which RF signals can direct the visual system to detect and track target objects with unknown appearances. Experiments show TagAttention can actively discover, identify, and track the target objects while matching them with their cyber-IDs by using commercial sensing devices in complex environments with various multipath reflectors. It only requires around one second to detect and localize a new mobile target appearing in the video and keeps tracking it accurately over time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2021.3052805</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8784-0031</orcidid><orcidid>https://orcid.org/0000-0003-2352-2816</orcidid><orcidid>https://orcid.org/0000-0002-3845-1646</orcidid><orcidid>https://orcid.org/0000-0001-6362-7669</orcidid><orcidid>https://orcid.org/0000-0002-0523-440X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2021-04, Vol.29 (2), p.890-903
issn 1063-6692
1558-2566
language eng
recordid cdi_ieee_primary_9336310
source IEEE Electronic Library (IEL)
subjects Cameras
Computer vision
mobile tracing
Object recognition
perception fusion
Radio frequency identification
Radio-frequency identification (RFID)
Reflectors
sensing
Sensors
Target detection
Target recognition
Target tracking
Tracing
Tracking
Visual signals
Visualization
Wireless communication
title TagAttention: Mobile Object Tracing With Zero Appearance Knowledge by Vision-RFID Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TagAttention:%20Mobile%20Object%20Tracing%20With%20Zero%20Appearance%20Knowledge%20by%20Vision-RFID%20Fusion&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Shi,%20Xiaofeng&rft.date=2021-04&rft.volume=29&rft.issue=2&rft.spage=890&rft.epage=903&rft.pages=890-903&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2021.3052805&rft_dat=%3Cproquest_RIE%3E2515744894%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515744894&rft_id=info:pmid/&rft_ieee_id=9336310&rfr_iscdi=true