NL-LinkNet: Toward Lighter But More Accurate Road Extraction With Nonlocal Operations

Road extraction from very high resolution (VHR) satellite images is one of the most important topics in the field of remote sensing. In this letter, we propose an efficient nonlocal LinkNet with nonlocal blocks (NLBs) that can grasp relations between global features. This enables each spatial featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Wang, Yooseung, Seo, Junghoon, Jeon, Taegyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Wang, Yooseung
Seo, Junghoon
Jeon, Taegyun
description Road extraction from very high resolution (VHR) satellite images is one of the most important topics in the field of remote sensing. In this letter, we propose an efficient nonlocal LinkNet with nonlocal blocks (NLBs) that can grasp relations between global features. This enables each spatial feature point to refer to all other contextual information and results in more accurate road segmentation. In detail, our single model without any postprocessing like conditional random field (CRF) refinement performed better than any other published state-of-the-art ensemble model in the official DeepGlobe Challenge. Moreover, our nonlocal LinkNet (NL-LinkNet) beat the D-LinkNet, the winner of the DeepGlobe challenge (Demir et al. , 2018), with 43% less parameters, less giga floating-point operations per seconds (GFLOPs), and shorter training convergence time. We also present empirical analyses on the proper usages of NLBs for the baseline model.
doi_str_mv 10.1109/LGRS.2021.3050477
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9336223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9336223</ieee_id><sourcerecordid>2610182527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-dbdc694bc3d1892fa0982651db22ca8e0d86667c722b90cd8f3f7f07c9e497523</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZJvJsyp1A3mBt6F9IkdZ2zmWmK-u9t2fDqvBye9xx4ALjEaIQxkjf5dPEyIojgEUUMpZwfgQFmTCSIcXzc55QlTIq3U3DWNBuESCoEH4DVLE_yqv6YuXgLl_5bBwvz6n0dXYB3bYTPPjg4NqYNOjq48NrCyU8M2sTK1_C1ims48_XWG72F853rqG7fnIOTUm8bd3GYQ7B6mCzvH5N8Pn26H-eJoSmOiS2syWRaGGqxkKTUSAqSMWwLQowWDlmRZRk3nJBCImNFSUteIm6kSyVnhA7B9f7uLviv1jVRbXwb6u6lIhlGWBBGeEfhPWWCb5rgSrUL1acOvwoj1dtTvT3V21MHe13nat-pnHP_vKQ0I4TSP822aow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610182527</pqid></control><display><type>article</type><title>NL-LinkNet: Toward Lighter But More Accurate Road Extraction With Nonlocal Operations</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yooseung ; Seo, Junghoon ; Jeon, Taegyun</creator><creatorcontrib>Wang, Yooseung ; Seo, Junghoon ; Jeon, Taegyun</creatorcontrib><description>Road extraction from very high resolution (VHR) satellite images is one of the most important topics in the field of remote sensing. In this letter, we propose an efficient nonlocal LinkNet with nonlocal blocks (NLBs) that can grasp relations between global features. This enables each spatial feature point to refer to all other contextual information and results in more accurate road segmentation. In detail, our single model without any postprocessing like conditional random field (CRF) refinement performed better than any other published state-of-the-art ensemble model in the official DeepGlobe Challenge. Moreover, our nonlocal LinkNet (NL-LinkNet) beat the D-LinkNet, the winner of the DeepGlobe challenge (Demir et al. , 2018), with 43% less parameters, less giga floating-point operations per seconds (GFLOPs), and shorter training convergence time. We also present empirical analyses on the proper usages of NLBs for the baseline model.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3050477</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer architecture ; Conditional random fields ; Convolutional neural networks (CNNs) ; Data mining ; Decoding ; Empirical analysis ; Feature extraction ; Floating point arithmetic ; Image resolution ; Image segmentation ; nonlocal LinkNet (NL-LinkNet) ; Remote sensing ; road extraction ; Roads ; Satellite imagery ; Satellites ; Spaceborne remote sensing ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-dbdc694bc3d1892fa0982651db22ca8e0d86667c722b90cd8f3f7f07c9e497523</citedby><cites>FETCH-LOGICAL-c341t-dbdc694bc3d1892fa0982651db22ca8e0d86667c722b90cd8f3f7f07c9e497523</cites><orcidid>0000-0001-8320-9050 ; 0000-0002-2341-0251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9336223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9336223$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yooseung</creatorcontrib><creatorcontrib>Seo, Junghoon</creatorcontrib><creatorcontrib>Jeon, Taegyun</creatorcontrib><title>NL-LinkNet: Toward Lighter But More Accurate Road Extraction With Nonlocal Operations</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Road extraction from very high resolution (VHR) satellite images is one of the most important topics in the field of remote sensing. In this letter, we propose an efficient nonlocal LinkNet with nonlocal blocks (NLBs) that can grasp relations between global features. This enables each spatial feature point to refer to all other contextual information and results in more accurate road segmentation. In detail, our single model without any postprocessing like conditional random field (CRF) refinement performed better than any other published state-of-the-art ensemble model in the official DeepGlobe Challenge. Moreover, our nonlocal LinkNet (NL-LinkNet) beat the D-LinkNet, the winner of the DeepGlobe challenge (Demir et al. , 2018), with 43% less parameters, less giga floating-point operations per seconds (GFLOPs), and shorter training convergence time. We also present empirical analyses on the proper usages of NLBs for the baseline model.</description><subject>Computer architecture</subject><subject>Conditional random fields</subject><subject>Convolutional neural networks (CNNs)</subject><subject>Data mining</subject><subject>Decoding</subject><subject>Empirical analysis</subject><subject>Feature extraction</subject><subject>Floating point arithmetic</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>nonlocal LinkNet (NL-LinkNet)</subject><subject>Remote sensing</subject><subject>road extraction</subject><subject>Roads</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Spaceborne remote sensing</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZJvJsyp1A3mBt6F9IkdZ2zmWmK-u9t2fDqvBye9xx4ALjEaIQxkjf5dPEyIojgEUUMpZwfgQFmTCSIcXzc55QlTIq3U3DWNBuESCoEH4DVLE_yqv6YuXgLl_5bBwvz6n0dXYB3bYTPPjg4NqYNOjq48NrCyU8M2sTK1_C1ims48_XWG72F853rqG7fnIOTUm8bd3GYQ7B6mCzvH5N8Pn26H-eJoSmOiS2syWRaGGqxkKTUSAqSMWwLQowWDlmRZRk3nJBCImNFSUteIm6kSyVnhA7B9f7uLviv1jVRbXwb6u6lIhlGWBBGeEfhPWWCb5rgSrUL1acOvwoj1dtTvT3V21MHe13nat-pnHP_vKQ0I4TSP822aow</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wang, Yooseung</creator><creator>Seo, Junghoon</creator><creator>Jeon, Taegyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8320-9050</orcidid><orcidid>https://orcid.org/0000-0002-2341-0251</orcidid></search><sort><creationdate>2022</creationdate><title>NL-LinkNet: Toward Lighter But More Accurate Road Extraction With Nonlocal Operations</title><author>Wang, Yooseung ; Seo, Junghoon ; Jeon, Taegyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-dbdc694bc3d1892fa0982651db22ca8e0d86667c722b90cd8f3f7f07c9e497523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer architecture</topic><topic>Conditional random fields</topic><topic>Convolutional neural networks (CNNs)</topic><topic>Data mining</topic><topic>Decoding</topic><topic>Empirical analysis</topic><topic>Feature extraction</topic><topic>Floating point arithmetic</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>nonlocal LinkNet (NL-LinkNet)</topic><topic>Remote sensing</topic><topic>road extraction</topic><topic>Roads</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Spaceborne remote sensing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yooseung</creatorcontrib><creatorcontrib>Seo, Junghoon</creatorcontrib><creatorcontrib>Jeon, Taegyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yooseung</au><au>Seo, Junghoon</au><au>Jeon, Taegyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NL-LinkNet: Toward Lighter But More Accurate Road Extraction With Nonlocal Operations</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Road extraction from very high resolution (VHR) satellite images is one of the most important topics in the field of remote sensing. In this letter, we propose an efficient nonlocal LinkNet with nonlocal blocks (NLBs) that can grasp relations between global features. This enables each spatial feature point to refer to all other contextual information and results in more accurate road segmentation. In detail, our single model without any postprocessing like conditional random field (CRF) refinement performed better than any other published state-of-the-art ensemble model in the official DeepGlobe Challenge. Moreover, our nonlocal LinkNet (NL-LinkNet) beat the D-LinkNet, the winner of the DeepGlobe challenge (Demir et al. , 2018), with 43% less parameters, less giga floating-point operations per seconds (GFLOPs), and shorter training convergence time. We also present empirical analyses on the proper usages of NLBs for the baseline model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3050477</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8320-9050</orcidid><orcidid>https://orcid.org/0000-0002-2341-0251</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_9336223
source IEEE Electronic Library (IEL)
subjects Computer architecture
Conditional random fields
Convolutional neural networks (CNNs)
Data mining
Decoding
Empirical analysis
Feature extraction
Floating point arithmetic
Image resolution
Image segmentation
nonlocal LinkNet (NL-LinkNet)
Remote sensing
road extraction
Roads
Satellite imagery
Satellites
Spaceborne remote sensing
Training
title NL-LinkNet: Toward Lighter But More Accurate Road Extraction With Nonlocal Operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NL-LinkNet:%20Toward%20Lighter%20But%20More%20Accurate%20Road%20Extraction%20With%20Nonlocal%20Operations&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Wang,%20Yooseung&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3050477&rft_dat=%3Cproquest_RIE%3E2610182527%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610182527&rft_id=info:pmid/&rft_ieee_id=9336223&rfr_iscdi=true