A Passive Decoupling Mechanism for Misalignment Compensation in Master-Slave Teleoperation
Teleoperated robots are commonly used in minimally invasive surgery as they can control surgical instruments at a distance. An operator sends the motion command via a master console, which must convert these into suitable slave instrument actuator inputs for intuitive interaction. However, most mast...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical robotics and bionics 2021-02, Vol.3 (1), p.285-288 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | 1 |
container_start_page | 285 |
container_title | IEEE transactions on medical robotics and bionics |
container_volume | 3 |
creator | Treratanakulchai, Shen Rodriguez y Baena, Ferdinando |
description | Teleoperated robots are commonly used in minimally invasive surgery as they can control surgical instruments at a distance. An operator sends the motion command via a master console, which must convert these into suitable slave instrument actuator inputs for intuitive interaction. However, most master-slave systems available to date use incremental task-space control and clutching, which introduces a discontinuity and orientation misalignment between the master control handle and slave instrument, with a consequent impact on task performance. In this article, we proposed a new master manipulator design to compensate for misalignment mechanically. The modular gimbal consists of a passive decoupling mechanism and a wrist locking feature. After describing the mechanisms and its kinematic configuration, we report on a comparative study under controlled conditions, developed to measure the end effector orientation in both compensated and non-compensated scenarios. The results demonstrate that the compensated master console maintains a near constant end effector orientation over the workspace during clutching, showing great promise as a solution to this outstanding open challenge in master-slave manipulation. |
doi_str_mv | 10.1109/TMRB.2021.3054829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9336055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9336055</ieee_id><sourcerecordid>2493594869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-d69da993d79404caa4893879376a17240b3650d0be2b722ea46bca00589f3fa83</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNT-APGy4Dl1s1_JHmv9hBZF68XLskkmdUuyG3dTwX9vaot4mmHmeWfgQeg8JdM0JepqtXy5nlJC0ykjgudUHaERFZlM2DA8_tefokmMG0IGVJCMyRF6n-FnE6P9AnwDpd92jXVrvITywzgbW1z7gJc2msauXQuux3PfduCi6a132Dq8NLGHkLw2ZjixggZ8B-F3e4ZOatNEmBzqGL3d3a7mD8ni6f5xPlskJeWiTyqpKqMUqzLFCS-N4blieaZYJk2aUU4KJgWpSAG0yCgFw2VRGkJErmpWm5yN0eX-bhf85xZirzd-G9zwUlOumFA8l2qg0j1VBh9jgFp3wbYmfOuU6J1FvbOodxb1weKQudhnLAD88YoxSYRgP8AZbXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493594869</pqid></control><display><type>article</type><title>A Passive Decoupling Mechanism for Misalignment Compensation in Master-Slave Teleoperation</title><source>IEEE Electronic Library (IEL)</source><creator>Treratanakulchai, Shen ; Rodriguez y Baena, Ferdinando</creator><creatorcontrib>Treratanakulchai, Shen ; Rodriguez y Baena, Ferdinando</creatorcontrib><description>Teleoperated robots are commonly used in minimally invasive surgery as they can control surgical instruments at a distance. An operator sends the motion command via a master console, which must convert these into suitable slave instrument actuator inputs for intuitive interaction. However, most master-slave systems available to date use incremental task-space control and clutching, which introduces a discontinuity and orientation misalignment between the master control handle and slave instrument, with a consequent impact on task performance. In this article, we proposed a new master manipulator design to compensate for misalignment mechanically. The modular gimbal consists of a passive decoupling mechanism and a wrist locking feature. After describing the mechanisms and its kinematic configuration, we report on a comparative study under controlled conditions, developed to measure the end effector orientation in both compensated and non-compensated scenarios. The results demonstrate that the compensated master console maintains a near constant end effector orientation over the workspace during clutching, showing great promise as a solution to this outstanding open challenge in master-slave manipulation.</description><identifier>ISSN: 2576-3202</identifier><identifier>EISSN: 2576-3202</identifier><identifier>DOI: 10.1109/TMRB.2021.3054829</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Comparative studies ; Control equipment ; Decoupling ; decoupling device ; End effectors ; Force ; Gears ; Instruments ; joint locking device ; Latches ; Locking ; Misalignment ; misalignment compensation ; Orientation ; Robots ; Surgical instruments ; Task analysis ; Teleoperation ; Wrist</subject><ispartof>IEEE transactions on medical robotics and bionics, 2021-02, Vol.3 (1), p.285-288</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-d69da993d79404caa4893879376a17240b3650d0be2b722ea46bca00589f3fa83</cites><orcidid>0000-0002-5199-9083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9336055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9336055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Treratanakulchai, Shen</creatorcontrib><creatorcontrib>Rodriguez y Baena, Ferdinando</creatorcontrib><title>A Passive Decoupling Mechanism for Misalignment Compensation in Master-Slave Teleoperation</title><title>IEEE transactions on medical robotics and bionics</title><addtitle>TMRB</addtitle><description>Teleoperated robots are commonly used in minimally invasive surgery as they can control surgical instruments at a distance. An operator sends the motion command via a master console, which must convert these into suitable slave instrument actuator inputs for intuitive interaction. However, most master-slave systems available to date use incremental task-space control and clutching, which introduces a discontinuity and orientation misalignment between the master control handle and slave instrument, with a consequent impact on task performance. In this article, we proposed a new master manipulator design to compensate for misalignment mechanically. The modular gimbal consists of a passive decoupling mechanism and a wrist locking feature. After describing the mechanisms and its kinematic configuration, we report on a comparative study under controlled conditions, developed to measure the end effector orientation in both compensated and non-compensated scenarios. The results demonstrate that the compensated master console maintains a near constant end effector orientation over the workspace during clutching, showing great promise as a solution to this outstanding open challenge in master-slave manipulation.</description><subject>Actuators</subject><subject>Comparative studies</subject><subject>Control equipment</subject><subject>Decoupling</subject><subject>decoupling device</subject><subject>End effectors</subject><subject>Force</subject><subject>Gears</subject><subject>Instruments</subject><subject>joint locking device</subject><subject>Latches</subject><subject>Locking</subject><subject>Misalignment</subject><subject>misalignment compensation</subject><subject>Orientation</subject><subject>Robots</subject><subject>Surgical instruments</subject><subject>Task analysis</subject><subject>Teleoperation</subject><subject>Wrist</subject><issn>2576-3202</issn><issn>2576-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsNT-APGy4Dl1s1_JHmv9hBZF68XLskkmdUuyG3dTwX9vaot4mmHmeWfgQeg8JdM0JepqtXy5nlJC0ykjgudUHaERFZlM2DA8_tefokmMG0IGVJCMyRF6n-FnE6P9AnwDpd92jXVrvITywzgbW1z7gJc2msauXQuux3PfduCi6a132Dq8NLGHkLw2ZjixggZ8B-F3e4ZOatNEmBzqGL3d3a7mD8ni6f5xPlskJeWiTyqpKqMUqzLFCS-N4blieaZYJk2aUU4KJgWpSAG0yCgFw2VRGkJErmpWm5yN0eX-bhf85xZirzd-G9zwUlOumFA8l2qg0j1VBh9jgFp3wbYmfOuU6J1FvbOodxb1weKQudhnLAD88YoxSYRgP8AZbXA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Treratanakulchai, Shen</creator><creator>Rodriguez y Baena, Ferdinando</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>K9.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5199-9083</orcidid></search><sort><creationdate>20210201</creationdate><title>A Passive Decoupling Mechanism for Misalignment Compensation in Master-Slave Teleoperation</title><author>Treratanakulchai, Shen ; Rodriguez y Baena, Ferdinando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-d69da993d79404caa4893879376a17240b3650d0be2b722ea46bca00589f3fa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Comparative studies</topic><topic>Control equipment</topic><topic>Decoupling</topic><topic>decoupling device</topic><topic>End effectors</topic><topic>Force</topic><topic>Gears</topic><topic>Instruments</topic><topic>joint locking device</topic><topic>Latches</topic><topic>Locking</topic><topic>Misalignment</topic><topic>misalignment compensation</topic><topic>Orientation</topic><topic>Robots</topic><topic>Surgical instruments</topic><topic>Task analysis</topic><topic>Teleoperation</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Treratanakulchai, Shen</creatorcontrib><creatorcontrib>Rodriguez y Baena, Ferdinando</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on medical robotics and bionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Treratanakulchai, Shen</au><au>Rodriguez y Baena, Ferdinando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Passive Decoupling Mechanism for Misalignment Compensation in Master-Slave Teleoperation</atitle><jtitle>IEEE transactions on medical robotics and bionics</jtitle><stitle>TMRB</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>3</volume><issue>1</issue><spage>285</spage><epage>288</epage><pages>285-288</pages><issn>2576-3202</issn><eissn>2576-3202</eissn><abstract>Teleoperated robots are commonly used in minimally invasive surgery as they can control surgical instruments at a distance. An operator sends the motion command via a master console, which must convert these into suitable slave instrument actuator inputs for intuitive interaction. However, most master-slave systems available to date use incremental task-space control and clutching, which introduces a discontinuity and orientation misalignment between the master control handle and slave instrument, with a consequent impact on task performance. In this article, we proposed a new master manipulator design to compensate for misalignment mechanically. The modular gimbal consists of a passive decoupling mechanism and a wrist locking feature. After describing the mechanisms and its kinematic configuration, we report on a comparative study under controlled conditions, developed to measure the end effector orientation in both compensated and non-compensated scenarios. The results demonstrate that the compensated master console maintains a near constant end effector orientation over the workspace during clutching, showing great promise as a solution to this outstanding open challenge in master-slave manipulation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMRB.2021.3054829</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5199-9083</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2576-3202 |
ispartof | IEEE transactions on medical robotics and bionics, 2021-02, Vol.3 (1), p.285-288 |
issn | 2576-3202 2576-3202 |
language | eng |
recordid | cdi_ieee_primary_9336055 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Comparative studies Control equipment Decoupling decoupling device End effectors Force Gears Instruments joint locking device Latches Locking Misalignment misalignment compensation Orientation Robots Surgical instruments Task analysis Teleoperation Wrist |
title | A Passive Decoupling Mechanism for Misalignment Compensation in Master-Slave Teleoperation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Passive%20Decoupling%20Mechanism%20for%20Misalignment%20Compensation%20in%20Master-Slave%20Teleoperation&rft.jtitle=IEEE%20transactions%20on%20medical%20robotics%20and%20bionics&rft.au=Treratanakulchai,%20Shen&rft.date=2021-02-01&rft.volume=3&rft.issue=1&rft.spage=285&rft.epage=288&rft.pages=285-288&rft.issn=2576-3202&rft.eissn=2576-3202&rft_id=info:doi/10.1109/TMRB.2021.3054829&rft_dat=%3Cproquest_RIE%3E2493594869%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493594869&rft_id=info:pmid/&rft_ieee_id=9336055&rfr_iscdi=true |