Data Fusion Approach for Collaborative Anomaly Intrusion Detection in Blockchain-Based Systems

Blockchain technology is rapidly changing the transaction behavior and efficiency of businesses in recent years. Data privacy and system reliability are critical issues that is highly required to be addressed in Blockchain environments. However, anomaly intrusion poses a significant threat to a Bloc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2022-08, Vol.9 (16), p.14741-14751
Hauptverfasser: Liang, Wei, Xiao, Lijun, Zhang, Ke, Tang, Mingdong, He, Dacheng, Li, Kuan-Ching
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14751
container_issue 16
container_start_page 14741
container_title IEEE internet of things journal
container_volume 9
creator Liang, Wei
Xiao, Lijun
Zhang, Ke
Tang, Mingdong
He, Dacheng
Li, Kuan-Ching
description Blockchain technology is rapidly changing the transaction behavior and efficiency of businesses in recent years. Data privacy and system reliability are critical issues that is highly required to be addressed in Blockchain environments. However, anomaly intrusion poses a significant threat to a Blockchain, and therefore, it is proposed in this article a collaborative clustering-characteristic-based data fusion approach for intrusion detection in a Blockchain-based system, where a mathematical model of data fusion is designed and an AI model is used to train and analyze data clusters in Blockchain networks. The abnormal characteristics in a Blockchain data set are identified, a weighted combination is carried out, and the weighted coefficients among several nodes are obtained after multiple rounds of mutual competition among clustering nodes. When the weighted coefficient and a similarity matching relationship follow a standard pattern, an abnormal intrusion behavior is accurately and collaboratively detected. Experimental results show that the proposed algorithm has high recognition accuracy and promising performance in the real-time detection of attacks in a Blockchain.
doi_str_mv 10.1109/JIOT.2021.3053842
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9333661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9333661</ieee_id><sourcerecordid>2700413950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bbc00bbc5337e50ad70cdfffd8157da66ac2a7a10c2967e18a1d28174fc68dac3</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEtPYD0BcKnHucJI2aY_7YDA0aQfGlchLU62ja0aSIe3f06oT4mL78Ly2_BByT2FMKeRPb8v1ZsyA0TGHlGcJuyIDxpmMEyHY9b_5loy83wNAG0tpLgbkc44Bo8XJV7aJJsejs6h3UWldNLN1jVvrMFQ_Jpo09oD1OVo2wfXw3ASjQzdVTTStrf7SO6yaeIreFNH72Qdz8HfkpsTam9GlD8nH4nkze41X65flbLKKNct5iLdbDdCWlHNpUsBCgi7KsiwymsoChUDNUCKFFhfS0AxpwTIqk1KLrEDNh-Sx39s-8H0yPqi9PbmmPamYBEgoz1NoKdpT2lnvnSnV0VUHdGdFQXUmVWdSdSbVxWSbeegzlTHmj88550JQ_guIFnAa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700413950</pqid></control><display><type>article</type><title>Data Fusion Approach for Collaborative Anomaly Intrusion Detection in Blockchain-Based Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Wei ; Xiao, Lijun ; Zhang, Ke ; Tang, Mingdong ; He, Dacheng ; Li, Kuan-Ching</creator><creatorcontrib>Liang, Wei ; Xiao, Lijun ; Zhang, Ke ; Tang, Mingdong ; He, Dacheng ; Li, Kuan-Ching</creatorcontrib><description>Blockchain technology is rapidly changing the transaction behavior and efficiency of businesses in recent years. Data privacy and system reliability are critical issues that is highly required to be addressed in Blockchain environments. However, anomaly intrusion poses a significant threat to a Blockchain, and therefore, it is proposed in this article a collaborative clustering-characteristic-based data fusion approach for intrusion detection in a Blockchain-based system, where a mathematical model of data fusion is designed and an AI model is used to train and analyze data clusters in Blockchain networks. The abnormal characteristics in a Blockchain data set are identified, a weighted combination is carried out, and the weighted coefficients among several nodes are obtained after multiple rounds of mutual competition among clustering nodes. When the weighted coefficient and a similarity matching relationship follow a standard pattern, an abnormal intrusion behavior is accurately and collaboratively detected. Experimental results show that the proposed algorithm has high recognition accuracy and promising performance in the real-time detection of attacks in a Blockchain.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3053842</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Analytical models ; Anomaly detection ; Blockchain ; Cluster analysis ; Clustering ; Clustering algorithms ; Collaboration ; Cryptography ; data fusion ; Data integration ; Data models ; Intrusion ; Intrusion detection ; Mathematical models ; Nodes ; Security ; similarity matching ; System reliability ; weighted combination</subject><ispartof>IEEE internet of things journal, 2022-08, Vol.9 (16), p.14741-14751</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bbc00bbc5337e50ad70cdfffd8157da66ac2a7a10c2967e18a1d28174fc68dac3</citedby><cites>FETCH-LOGICAL-c293t-bbc00bbc5337e50ad70cdfffd8157da66ac2a7a10c2967e18a1d28174fc68dac3</cites><orcidid>0000-0003-3081-7751 ; 0000-0002-5074-1363 ; 0000-0003-4165-5583 ; 0000-0001-7739-7163 ; 0000-0003-1381-4364 ; 0000-0001-6010-2955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9333661$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9333661$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Xiao, Lijun</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Tang, Mingdong</creatorcontrib><creatorcontrib>He, Dacheng</creatorcontrib><creatorcontrib>Li, Kuan-Ching</creatorcontrib><title>Data Fusion Approach for Collaborative Anomaly Intrusion Detection in Blockchain-Based Systems</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Blockchain technology is rapidly changing the transaction behavior and efficiency of businesses in recent years. Data privacy and system reliability are critical issues that is highly required to be addressed in Blockchain environments. However, anomaly intrusion poses a significant threat to a Blockchain, and therefore, it is proposed in this article a collaborative clustering-characteristic-based data fusion approach for intrusion detection in a Blockchain-based system, where a mathematical model of data fusion is designed and an AI model is used to train and analyze data clusters in Blockchain networks. The abnormal characteristics in a Blockchain data set are identified, a weighted combination is carried out, and the weighted coefficients among several nodes are obtained after multiple rounds of mutual competition among clustering nodes. When the weighted coefficient and a similarity matching relationship follow a standard pattern, an abnormal intrusion behavior is accurately and collaboratively detected. Experimental results show that the proposed algorithm has high recognition accuracy and promising performance in the real-time detection of attacks in a Blockchain.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Anomaly detection</subject><subject>Blockchain</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Collaboration</subject><subject>Cryptography</subject><subject>data fusion</subject><subject>Data integration</subject><subject>Data models</subject><subject>Intrusion</subject><subject>Intrusion detection</subject><subject>Mathematical models</subject><subject>Nodes</subject><subject>Security</subject><subject>similarity matching</subject><subject>System reliability</subject><subject>weighted combination</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwzAMhiMEEtPYD0BcKnHucJI2aY_7YDA0aQfGlchLU62ja0aSIe3f06oT4mL78Ly2_BByT2FMKeRPb8v1ZsyA0TGHlGcJuyIDxpmMEyHY9b_5loy83wNAG0tpLgbkc44Bo8XJV7aJJsejs6h3UWldNLN1jVvrMFQ_Jpo09oD1OVo2wfXw3ASjQzdVTTStrf7SO6yaeIreFNH72Qdz8HfkpsTam9GlD8nH4nkze41X65flbLKKNct5iLdbDdCWlHNpUsBCgi7KsiwymsoChUDNUCKFFhfS0AxpwTIqk1KLrEDNh-Sx39s-8H0yPqi9PbmmPamYBEgoz1NoKdpT2lnvnSnV0VUHdGdFQXUmVWdSdSbVxWSbeegzlTHmj88550JQ_guIFnAa</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Liang, Wei</creator><creator>Xiao, Lijun</creator><creator>Zhang, Ke</creator><creator>Tang, Mingdong</creator><creator>He, Dacheng</creator><creator>Li, Kuan-Ching</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3081-7751</orcidid><orcidid>https://orcid.org/0000-0002-5074-1363</orcidid><orcidid>https://orcid.org/0000-0003-4165-5583</orcidid><orcidid>https://orcid.org/0000-0001-7739-7163</orcidid><orcidid>https://orcid.org/0000-0003-1381-4364</orcidid><orcidid>https://orcid.org/0000-0001-6010-2955</orcidid></search><sort><creationdate>20220815</creationdate><title>Data Fusion Approach for Collaborative Anomaly Intrusion Detection in Blockchain-Based Systems</title><author>Liang, Wei ; Xiao, Lijun ; Zhang, Ke ; Tang, Mingdong ; He, Dacheng ; Li, Kuan-Ching</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bbc00bbc5337e50ad70cdfffd8157da66ac2a7a10c2967e18a1d28174fc68dac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Anomaly detection</topic><topic>Blockchain</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Collaboration</topic><topic>Cryptography</topic><topic>data fusion</topic><topic>Data integration</topic><topic>Data models</topic><topic>Intrusion</topic><topic>Intrusion detection</topic><topic>Mathematical models</topic><topic>Nodes</topic><topic>Security</topic><topic>similarity matching</topic><topic>System reliability</topic><topic>weighted combination</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Xiao, Lijun</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Tang, Mingdong</creatorcontrib><creatorcontrib>He, Dacheng</creatorcontrib><creatorcontrib>Li, Kuan-Ching</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Wei</au><au>Xiao, Lijun</au><au>Zhang, Ke</au><au>Tang, Mingdong</au><au>He, Dacheng</au><au>Li, Kuan-Ching</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Fusion Approach for Collaborative Anomaly Intrusion Detection in Blockchain-Based Systems</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-08-15</date><risdate>2022</risdate><volume>9</volume><issue>16</issue><spage>14741</spage><epage>14751</epage><pages>14741-14751</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Blockchain technology is rapidly changing the transaction behavior and efficiency of businesses in recent years. Data privacy and system reliability are critical issues that is highly required to be addressed in Blockchain environments. However, anomaly intrusion poses a significant threat to a Blockchain, and therefore, it is proposed in this article a collaborative clustering-characteristic-based data fusion approach for intrusion detection in a Blockchain-based system, where a mathematical model of data fusion is designed and an AI model is used to train and analyze data clusters in Blockchain networks. The abnormal characteristics in a Blockchain data set are identified, a weighted combination is carried out, and the weighted coefficients among several nodes are obtained after multiple rounds of mutual competition among clustering nodes. When the weighted coefficient and a similarity matching relationship follow a standard pattern, an abnormal intrusion behavior is accurately and collaboratively detected. Experimental results show that the proposed algorithm has high recognition accuracy and promising performance in the real-time detection of attacks in a Blockchain.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3053842</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3081-7751</orcidid><orcidid>https://orcid.org/0000-0002-5074-1363</orcidid><orcidid>https://orcid.org/0000-0003-4165-5583</orcidid><orcidid>https://orcid.org/0000-0001-7739-7163</orcidid><orcidid>https://orcid.org/0000-0003-1381-4364</orcidid><orcidid>https://orcid.org/0000-0001-6010-2955</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2022-08, Vol.9 (16), p.14741-14751
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_9333661
source IEEE Electronic Library (IEL)
subjects Algorithms
Analytical models
Anomaly detection
Blockchain
Cluster analysis
Clustering
Clustering algorithms
Collaboration
Cryptography
data fusion
Data integration
Data models
Intrusion
Intrusion detection
Mathematical models
Nodes
Security
similarity matching
System reliability
weighted combination
title Data Fusion Approach for Collaborative Anomaly Intrusion Detection in Blockchain-Based Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Fusion%20Approach%20for%20Collaborative%20Anomaly%20Intrusion%20Detection%20in%20Blockchain-Based%20Systems&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Liang,%20Wei&rft.date=2022-08-15&rft.volume=9&rft.issue=16&rft.spage=14741&rft.epage=14751&rft.pages=14741-14751&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3053842&rft_dat=%3Cproquest_RIE%3E2700413950%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700413950&rft_id=info:pmid/&rft_ieee_id=9333661&rfr_iscdi=true