Data Fusion Approach for Collaborative Anomaly Intrusion Detection in Blockchain-Based Systems
Blockchain technology is rapidly changing the transaction behavior and efficiency of businesses in recent years. Data privacy and system reliability are critical issues that is highly required to be addressed in Blockchain environments. However, anomaly intrusion poses a significant threat to a Bloc...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2022-08, Vol.9 (16), p.14741-14751 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14751 |
---|---|
container_issue | 16 |
container_start_page | 14741 |
container_title | IEEE internet of things journal |
container_volume | 9 |
creator | Liang, Wei Xiao, Lijun Zhang, Ke Tang, Mingdong He, Dacheng Li, Kuan-Ching |
description | Blockchain technology is rapidly changing the transaction behavior and efficiency of businesses in recent years. Data privacy and system reliability are critical issues that is highly required to be addressed in Blockchain environments. However, anomaly intrusion poses a significant threat to a Blockchain, and therefore, it is proposed in this article a collaborative clustering-characteristic-based data fusion approach for intrusion detection in a Blockchain-based system, where a mathematical model of data fusion is designed and an AI model is used to train and analyze data clusters in Blockchain networks. The abnormal characteristics in a Blockchain data set are identified, a weighted combination is carried out, and the weighted coefficients among several nodes are obtained after multiple rounds of mutual competition among clustering nodes. When the weighted coefficient and a similarity matching relationship follow a standard pattern, an abnormal intrusion behavior is accurately and collaboratively detected. Experimental results show that the proposed algorithm has high recognition accuracy and promising performance in the real-time detection of attacks in a Blockchain. |
doi_str_mv | 10.1109/JIOT.2021.3053842 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9333661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9333661</ieee_id><sourcerecordid>2700413950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bbc00bbc5337e50ad70cdfffd8157da66ac2a7a10c2967e18a1d28174fc68dac3</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEtPYD0BcKnHucJI2aY_7YDA0aQfGlchLU62ja0aSIe3f06oT4mL78Ly2_BByT2FMKeRPb8v1ZsyA0TGHlGcJuyIDxpmMEyHY9b_5loy83wNAG0tpLgbkc44Bo8XJV7aJJsejs6h3UWldNLN1jVvrMFQ_Jpo09oD1OVo2wfXw3ASjQzdVTTStrf7SO6yaeIreFNH72Qdz8HfkpsTam9GlD8nH4nkze41X65flbLKKNct5iLdbDdCWlHNpUsBCgi7KsiwymsoChUDNUCKFFhfS0AxpwTIqk1KLrEDNh-Sx39s-8H0yPqi9PbmmPamYBEgoz1NoKdpT2lnvnSnV0VUHdGdFQXUmVWdSdSbVxWSbeegzlTHmj88550JQ_guIFnAa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700413950</pqid></control><display><type>article</type><title>Data Fusion Approach for Collaborative Anomaly Intrusion Detection in Blockchain-Based Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Wei ; Xiao, Lijun ; Zhang, Ke ; Tang, Mingdong ; He, Dacheng ; Li, Kuan-Ching</creator><creatorcontrib>Liang, Wei ; Xiao, Lijun ; Zhang, Ke ; Tang, Mingdong ; He, Dacheng ; Li, Kuan-Ching</creatorcontrib><description>Blockchain technology is rapidly changing the transaction behavior and efficiency of businesses in recent years. Data privacy and system reliability are critical issues that is highly required to be addressed in Blockchain environments. However, anomaly intrusion poses a significant threat to a Blockchain, and therefore, it is proposed in this article a collaborative clustering-characteristic-based data fusion approach for intrusion detection in a Blockchain-based system, where a mathematical model of data fusion is designed and an AI model is used to train and analyze data clusters in Blockchain networks. The abnormal characteristics in a Blockchain data set are identified, a weighted combination is carried out, and the weighted coefficients among several nodes are obtained after multiple rounds of mutual competition among clustering nodes. When the weighted coefficient and a similarity matching relationship follow a standard pattern, an abnormal intrusion behavior is accurately and collaboratively detected. Experimental results show that the proposed algorithm has high recognition accuracy and promising performance in the real-time detection of attacks in a Blockchain.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3053842</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Analytical models ; Anomaly detection ; Blockchain ; Cluster analysis ; Clustering ; Clustering algorithms ; Collaboration ; Cryptography ; data fusion ; Data integration ; Data models ; Intrusion ; Intrusion detection ; Mathematical models ; Nodes ; Security ; similarity matching ; System reliability ; weighted combination</subject><ispartof>IEEE internet of things journal, 2022-08, Vol.9 (16), p.14741-14751</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bbc00bbc5337e50ad70cdfffd8157da66ac2a7a10c2967e18a1d28174fc68dac3</citedby><cites>FETCH-LOGICAL-c293t-bbc00bbc5337e50ad70cdfffd8157da66ac2a7a10c2967e18a1d28174fc68dac3</cites><orcidid>0000-0003-3081-7751 ; 0000-0002-5074-1363 ; 0000-0003-4165-5583 ; 0000-0001-7739-7163 ; 0000-0003-1381-4364 ; 0000-0001-6010-2955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9333661$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9333661$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Xiao, Lijun</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Tang, Mingdong</creatorcontrib><creatorcontrib>He, Dacheng</creatorcontrib><creatorcontrib>Li, Kuan-Ching</creatorcontrib><title>Data Fusion Approach for Collaborative Anomaly Intrusion Detection in Blockchain-Based Systems</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Blockchain technology is rapidly changing the transaction behavior and efficiency of businesses in recent years. Data privacy and system reliability are critical issues that is highly required to be addressed in Blockchain environments. However, anomaly intrusion poses a significant threat to a Blockchain, and therefore, it is proposed in this article a collaborative clustering-characteristic-based data fusion approach for intrusion detection in a Blockchain-based system, where a mathematical model of data fusion is designed and an AI model is used to train and analyze data clusters in Blockchain networks. The abnormal characteristics in a Blockchain data set are identified, a weighted combination is carried out, and the weighted coefficients among several nodes are obtained after multiple rounds of mutual competition among clustering nodes. When the weighted coefficient and a similarity matching relationship follow a standard pattern, an abnormal intrusion behavior is accurately and collaboratively detected. Experimental results show that the proposed algorithm has high recognition accuracy and promising performance in the real-time detection of attacks in a Blockchain.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Anomaly detection</subject><subject>Blockchain</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Collaboration</subject><subject>Cryptography</subject><subject>data fusion</subject><subject>Data integration</subject><subject>Data models</subject><subject>Intrusion</subject><subject>Intrusion detection</subject><subject>Mathematical models</subject><subject>Nodes</subject><subject>Security</subject><subject>similarity matching</subject><subject>System reliability</subject><subject>weighted combination</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwzAMhiMEEtPYD0BcKnHucJI2aY_7YDA0aQfGlchLU62ja0aSIe3f06oT4mL78Ly2_BByT2FMKeRPb8v1ZsyA0TGHlGcJuyIDxpmMEyHY9b_5loy83wNAG0tpLgbkc44Bo8XJV7aJJsejs6h3UWldNLN1jVvrMFQ_Jpo09oD1OVo2wfXw3ASjQzdVTTStrf7SO6yaeIreFNH72Qdz8HfkpsTam9GlD8nH4nkze41X65flbLKKNct5iLdbDdCWlHNpUsBCgi7KsiwymsoChUDNUCKFFhfS0AxpwTIqk1KLrEDNh-Sx39s-8H0yPqi9PbmmPamYBEgoz1NoKdpT2lnvnSnV0VUHdGdFQXUmVWdSdSbVxWSbeegzlTHmj88550JQ_guIFnAa</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Liang, Wei</creator><creator>Xiao, Lijun</creator><creator>Zhang, Ke</creator><creator>Tang, Mingdong</creator><creator>He, Dacheng</creator><creator>Li, Kuan-Ching</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3081-7751</orcidid><orcidid>https://orcid.org/0000-0002-5074-1363</orcidid><orcidid>https://orcid.org/0000-0003-4165-5583</orcidid><orcidid>https://orcid.org/0000-0001-7739-7163</orcidid><orcidid>https://orcid.org/0000-0003-1381-4364</orcidid><orcidid>https://orcid.org/0000-0001-6010-2955</orcidid></search><sort><creationdate>20220815</creationdate><title>Data Fusion Approach for Collaborative Anomaly Intrusion Detection in Blockchain-Based Systems</title><author>Liang, Wei ; Xiao, Lijun ; Zhang, Ke ; Tang, Mingdong ; He, Dacheng ; Li, Kuan-Ching</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bbc00bbc5337e50ad70cdfffd8157da66ac2a7a10c2967e18a1d28174fc68dac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Anomaly detection</topic><topic>Blockchain</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Collaboration</topic><topic>Cryptography</topic><topic>data fusion</topic><topic>Data integration</topic><topic>Data models</topic><topic>Intrusion</topic><topic>Intrusion detection</topic><topic>Mathematical models</topic><topic>Nodes</topic><topic>Security</topic><topic>similarity matching</topic><topic>System reliability</topic><topic>weighted combination</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Xiao, Lijun</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Tang, Mingdong</creatorcontrib><creatorcontrib>He, Dacheng</creatorcontrib><creatorcontrib>Li, Kuan-Ching</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Wei</au><au>Xiao, Lijun</au><au>Zhang, Ke</au><au>Tang, Mingdong</au><au>He, Dacheng</au><au>Li, Kuan-Ching</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Fusion Approach for Collaborative Anomaly Intrusion Detection in Blockchain-Based Systems</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-08-15</date><risdate>2022</risdate><volume>9</volume><issue>16</issue><spage>14741</spage><epage>14751</epage><pages>14741-14751</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Blockchain technology is rapidly changing the transaction behavior and efficiency of businesses in recent years. Data privacy and system reliability are critical issues that is highly required to be addressed in Blockchain environments. However, anomaly intrusion poses a significant threat to a Blockchain, and therefore, it is proposed in this article a collaborative clustering-characteristic-based data fusion approach for intrusion detection in a Blockchain-based system, where a mathematical model of data fusion is designed and an AI model is used to train and analyze data clusters in Blockchain networks. The abnormal characteristics in a Blockchain data set are identified, a weighted combination is carried out, and the weighted coefficients among several nodes are obtained after multiple rounds of mutual competition among clustering nodes. When the weighted coefficient and a similarity matching relationship follow a standard pattern, an abnormal intrusion behavior is accurately and collaboratively detected. Experimental results show that the proposed algorithm has high recognition accuracy and promising performance in the real-time detection of attacks in a Blockchain.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3053842</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3081-7751</orcidid><orcidid>https://orcid.org/0000-0002-5074-1363</orcidid><orcidid>https://orcid.org/0000-0003-4165-5583</orcidid><orcidid>https://orcid.org/0000-0001-7739-7163</orcidid><orcidid>https://orcid.org/0000-0003-1381-4364</orcidid><orcidid>https://orcid.org/0000-0001-6010-2955</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2022-08, Vol.9 (16), p.14741-14751 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_9333661 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Analytical models Anomaly detection Blockchain Cluster analysis Clustering Clustering algorithms Collaboration Cryptography data fusion Data integration Data models Intrusion Intrusion detection Mathematical models Nodes Security similarity matching System reliability weighted combination |
title | Data Fusion Approach for Collaborative Anomaly Intrusion Detection in Blockchain-Based Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Fusion%20Approach%20for%20Collaborative%20Anomaly%20Intrusion%20Detection%20in%20Blockchain-Based%20Systems&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Liang,%20Wei&rft.date=2022-08-15&rft.volume=9&rft.issue=16&rft.spage=14741&rft.epage=14751&rft.pages=14741-14751&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3053842&rft_dat=%3Cproquest_RIE%3E2700413950%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700413950&rft_id=info:pmid/&rft_ieee_id=9333661&rfr_iscdi=true |