Fast Collision Detection for Small Unmanned Aircraft Systems in Urban Airspace
With the dramatic development of small unmanned aircraft systems (sUAS), how to ensure sUAS safety operation has been a growing concern. This article proposes a fast probabilistic collision detection method for sUAS based on probability density function approximations. Firstly, cylindrical collision...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.16630-16641 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16641 |
---|---|
container_issue | |
container_start_page | 16630 |
container_title | IEEE access |
container_volume | 9 |
creator | Zou, Yiyuan Zhang, Honghai Feng, Dikun Liu, Hao Zhong, Gang |
description | With the dramatic development of small unmanned aircraft systems (sUAS), how to ensure sUAS safety operation has been a growing concern. This article proposes a fast probabilistic collision detection method for sUAS based on probability density function approximations. Firstly, cylindrical collision zones for sUAS and obstacles are established by geometrical methods for simplifying collision modeling, and instantaneous collision probability for sUAS is expressed by a triple integral. Secondly, a rapid estimation algorithm is derived for instantaneous collision probability, and then the predicted collision probability in probabilistic collision detection can be obtained by the maximum of instantaneous collision probabilities during the encounter. Randomized tests indicate that the average computation time of the proposed algorithm is less than 0.001s, and the Mean Absolute Error (MAE) is less than 0.01 and the Root Mean Squared Error (RMSE) is less than 0.02. Finally, numerical simulations are carried out to analyze the influence of parameters, including crossing angle, predicted separation at the closest point of approach (CPA), and predicted time to CPA, on collision probabilities. The optimal detection time for collision detection is also discussed in the different types of encounters. The collision detection method proposed in this article can provide support for real-time collision avoidance and the definition of dynamic safety bounds for sUAS. |
doi_str_mv | 10.1109/ACCESS.2021.3053302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9330539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9330539</ieee_id><doaj_id>oai_doaj_org_article_55d24e7f70e840fe865dbae56cca8bcd</doaj_id><sourcerecordid>2483252935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-eb55d852f859f108475fcfe0d58df65483b9b024a30b6181de07809608c333813</originalsourceid><addsrcrecordid>eNpNUcFuwjAMjaZNGmJ8AZdKO8OcpGnTI-pgQ0LboeMcpakzFZWGJeXA369dEZovtmy_9yw_QuYUlpRC9rLK83VRLBkwuuQgOAd2RyaMJtmCC57c_6sfySyEA_Qh-5ZIJ-Rjo0MX5a5p6lC7NnrFDk03VNb5qDjqpon27VG3LVbRqvbGa9tFxSV0eAxR3UZ7X-p2mISTNvhEHqxuAs6ueUr2m_VX_r7Yfb5t89VuYWKQ3QJLISopmJUisxRknAprLEIlZGUTEUteZiWwWHMoEypphZBKyBKQhnMuKZ-S7chbOX1QJ18ftb8op2v113D-W2nf1aZB1SuxGFObAsoYLMpEVKVGkRijZWmqnut55Dp593PG0KmDO_u2P1-x_hImWNb_bkr4uGW8C8GjvalSUIMPavRBDT6oqw89aj6iakS8ITI-zDP-Cx6igm4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483252935</pqid></control><display><type>article</type><title>Fast Collision Detection for Small Unmanned Aircraft Systems in Urban Airspace</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zou, Yiyuan ; Zhang, Honghai ; Feng, Dikun ; Liu, Hao ; Zhong, Gang</creator><creatorcontrib>Zou, Yiyuan ; Zhang, Honghai ; Feng, Dikun ; Liu, Hao ; Zhong, Gang</creatorcontrib><description>With the dramatic development of small unmanned aircraft systems (sUAS), how to ensure sUAS safety operation has been a growing concern. This article proposes a fast probabilistic collision detection method for sUAS based on probability density function approximations. Firstly, cylindrical collision zones for sUAS and obstacles are established by geometrical methods for simplifying collision modeling, and instantaneous collision probability for sUAS is expressed by a triple integral. Secondly, a rapid estimation algorithm is derived for instantaneous collision probability, and then the predicted collision probability in probabilistic collision detection can be obtained by the maximum of instantaneous collision probabilities during the encounter. Randomized tests indicate that the average computation time of the proposed algorithm is less than 0.001s, and the Mean Absolute Error (MAE) is less than 0.01 and the Root Mean Squared Error (RMSE) is less than 0.02. Finally, numerical simulations are carried out to analyze the influence of parameters, including crossing angle, predicted separation at the closest point of approach (CPA), and predicted time to CPA, on collision probabilities. The optimal detection time for collision detection is also discussed in the different types of encounters. The collision detection method proposed in this article can provide support for real-time collision avoidance and the definition of dynamic safety bounds for sUAS.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3053302</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aircraft ; Aircraft accidents ; Aircraft detection ; Airspace ; Algorithms ; Atmospheric modeling ; Collision avoidance ; Collision detection ; Collision dynamics ; collision zone ; Estimation ; Gaussian distribution ; Mathematical models ; Probabilistic logic ; Probability ; Probability density functions ; probability estimation ; Root-mean-square errors ; Safety ; small unmanned aircraft systems ; Statistical analysis ; Trajectory ; Unmanned aerial vehicles ; Unmanned aircraft</subject><ispartof>IEEE access, 2021, Vol.9, p.16630-16641</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-eb55d852f859f108475fcfe0d58df65483b9b024a30b6181de07809608c333813</citedby><cites>FETCH-LOGICAL-c408t-eb55d852f859f108475fcfe0d58df65483b9b024a30b6181de07809608c333813</cites><orcidid>0000-0002-3026-538X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9330539$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Zou, Yiyuan</creatorcontrib><creatorcontrib>Zhang, Honghai</creatorcontrib><creatorcontrib>Feng, Dikun</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Zhong, Gang</creatorcontrib><title>Fast Collision Detection for Small Unmanned Aircraft Systems in Urban Airspace</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the dramatic development of small unmanned aircraft systems (sUAS), how to ensure sUAS safety operation has been a growing concern. This article proposes a fast probabilistic collision detection method for sUAS based on probability density function approximations. Firstly, cylindrical collision zones for sUAS and obstacles are established by geometrical methods for simplifying collision modeling, and instantaneous collision probability for sUAS is expressed by a triple integral. Secondly, a rapid estimation algorithm is derived for instantaneous collision probability, and then the predicted collision probability in probabilistic collision detection can be obtained by the maximum of instantaneous collision probabilities during the encounter. Randomized tests indicate that the average computation time of the proposed algorithm is less than 0.001s, and the Mean Absolute Error (MAE) is less than 0.01 and the Root Mean Squared Error (RMSE) is less than 0.02. Finally, numerical simulations are carried out to analyze the influence of parameters, including crossing angle, predicted separation at the closest point of approach (CPA), and predicted time to CPA, on collision probabilities. The optimal detection time for collision detection is also discussed in the different types of encounters. The collision detection method proposed in this article can provide support for real-time collision avoidance and the definition of dynamic safety bounds for sUAS.</description><subject>Aircraft</subject><subject>Aircraft accidents</subject><subject>Aircraft detection</subject><subject>Airspace</subject><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Collision avoidance</subject><subject>Collision detection</subject><subject>Collision dynamics</subject><subject>collision zone</subject><subject>Estimation</subject><subject>Gaussian distribution</subject><subject>Mathematical models</subject><subject>Probabilistic logic</subject><subject>Probability</subject><subject>Probability density functions</subject><subject>probability estimation</subject><subject>Root-mean-square errors</subject><subject>Safety</subject><subject>small unmanned aircraft systems</subject><subject>Statistical analysis</subject><subject>Trajectory</subject><subject>Unmanned aerial vehicles</subject><subject>Unmanned aircraft</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFuwjAMjaZNGmJ8AZdKO8OcpGnTI-pgQ0LboeMcpakzFZWGJeXA369dEZovtmy_9yw_QuYUlpRC9rLK83VRLBkwuuQgOAd2RyaMJtmCC57c_6sfySyEA_Qh-5ZIJ-Rjo0MX5a5p6lC7NnrFDk03VNb5qDjqpon27VG3LVbRqvbGa9tFxSV0eAxR3UZ7X-p2mISTNvhEHqxuAs6ueUr2m_VX_r7Yfb5t89VuYWKQ3QJLISopmJUisxRknAprLEIlZGUTEUteZiWwWHMoEypphZBKyBKQhnMuKZ-S7chbOX1QJ18ftb8op2v113D-W2nf1aZB1SuxGFObAsoYLMpEVKVGkRijZWmqnut55Dp593PG0KmDO_u2P1-x_hImWNb_bkr4uGW8C8GjvalSUIMPavRBDT6oqw89aj6iakS8ITI-zDP-Cx6igm4</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zou, Yiyuan</creator><creator>Zhang, Honghai</creator><creator>Feng, Dikun</creator><creator>Liu, Hao</creator><creator>Zhong, Gang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3026-538X</orcidid></search><sort><creationdate>2021</creationdate><title>Fast Collision Detection for Small Unmanned Aircraft Systems in Urban Airspace</title><author>Zou, Yiyuan ; Zhang, Honghai ; Feng, Dikun ; Liu, Hao ; Zhong, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-eb55d852f859f108475fcfe0d58df65483b9b024a30b6181de07809608c333813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aircraft</topic><topic>Aircraft accidents</topic><topic>Aircraft detection</topic><topic>Airspace</topic><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Collision avoidance</topic><topic>Collision detection</topic><topic>Collision dynamics</topic><topic>collision zone</topic><topic>Estimation</topic><topic>Gaussian distribution</topic><topic>Mathematical models</topic><topic>Probabilistic logic</topic><topic>Probability</topic><topic>Probability density functions</topic><topic>probability estimation</topic><topic>Root-mean-square errors</topic><topic>Safety</topic><topic>small unmanned aircraft systems</topic><topic>Statistical analysis</topic><topic>Trajectory</topic><topic>Unmanned aerial vehicles</topic><topic>Unmanned aircraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yiyuan</creatorcontrib><creatorcontrib>Zhang, Honghai</creatorcontrib><creatorcontrib>Feng, Dikun</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Zhong, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Yiyuan</au><au>Zhang, Honghai</au><au>Feng, Dikun</au><au>Liu, Hao</au><au>Zhong, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Collision Detection for Small Unmanned Aircraft Systems in Urban Airspace</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>16630</spage><epage>16641</epage><pages>16630-16641</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the dramatic development of small unmanned aircraft systems (sUAS), how to ensure sUAS safety operation has been a growing concern. This article proposes a fast probabilistic collision detection method for sUAS based on probability density function approximations. Firstly, cylindrical collision zones for sUAS and obstacles are established by geometrical methods for simplifying collision modeling, and instantaneous collision probability for sUAS is expressed by a triple integral. Secondly, a rapid estimation algorithm is derived for instantaneous collision probability, and then the predicted collision probability in probabilistic collision detection can be obtained by the maximum of instantaneous collision probabilities during the encounter. Randomized tests indicate that the average computation time of the proposed algorithm is less than 0.001s, and the Mean Absolute Error (MAE) is less than 0.01 and the Root Mean Squared Error (RMSE) is less than 0.02. Finally, numerical simulations are carried out to analyze the influence of parameters, including crossing angle, predicted separation at the closest point of approach (CPA), and predicted time to CPA, on collision probabilities. The optimal detection time for collision detection is also discussed in the different types of encounters. The collision detection method proposed in this article can provide support for real-time collision avoidance and the definition of dynamic safety bounds for sUAS.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3053302</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3026-538X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.16630-16641 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9330539 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aircraft Aircraft accidents Aircraft detection Airspace Algorithms Atmospheric modeling Collision avoidance Collision detection Collision dynamics collision zone Estimation Gaussian distribution Mathematical models Probabilistic logic Probability Probability density functions probability estimation Root-mean-square errors Safety small unmanned aircraft systems Statistical analysis Trajectory Unmanned aerial vehicles Unmanned aircraft |
title | Fast Collision Detection for Small Unmanned Aircraft Systems in Urban Airspace |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Collision%20Detection%20for%20Small%20Unmanned%20Aircraft%20Systems%20in%20Urban%20Airspace&rft.jtitle=IEEE%20access&rft.au=Zou,%20Yiyuan&rft.date=2021&rft.volume=9&rft.spage=16630&rft.epage=16641&rft.pages=16630-16641&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3053302&rft_dat=%3Cproquest_ieee_%3E2483252935%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483252935&rft_id=info:pmid/&rft_ieee_id=9330539&rft_doaj_id=oai_doaj_org_article_55d24e7f70e840fe865dbae56cca8bcd&rfr_iscdi=true |