Fast Collision Detection for Small Unmanned Aircraft Systems in Urban Airspace

With the dramatic development of small unmanned aircraft systems (sUAS), how to ensure sUAS safety operation has been a growing concern. This article proposes a fast probabilistic collision detection method for sUAS based on probability density function approximations. Firstly, cylindrical collision...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.16630-16641
Hauptverfasser: Zou, Yiyuan, Zhang, Honghai, Feng, Dikun, Liu, Hao, Zhong, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16641
container_issue
container_start_page 16630
container_title IEEE access
container_volume 9
creator Zou, Yiyuan
Zhang, Honghai
Feng, Dikun
Liu, Hao
Zhong, Gang
description With the dramatic development of small unmanned aircraft systems (sUAS), how to ensure sUAS safety operation has been a growing concern. This article proposes a fast probabilistic collision detection method for sUAS based on probability density function approximations. Firstly, cylindrical collision zones for sUAS and obstacles are established by geometrical methods for simplifying collision modeling, and instantaneous collision probability for sUAS is expressed by a triple integral. Secondly, a rapid estimation algorithm is derived for instantaneous collision probability, and then the predicted collision probability in probabilistic collision detection can be obtained by the maximum of instantaneous collision probabilities during the encounter. Randomized tests indicate that the average computation time of the proposed algorithm is less than 0.001s, and the Mean Absolute Error (MAE) is less than 0.01 and the Root Mean Squared Error (RMSE) is less than 0.02. Finally, numerical simulations are carried out to analyze the influence of parameters, including crossing angle, predicted separation at the closest point of approach (CPA), and predicted time to CPA, on collision probabilities. The optimal detection time for collision detection is also discussed in the different types of encounters. The collision detection method proposed in this article can provide support for real-time collision avoidance and the definition of dynamic safety bounds for sUAS.
doi_str_mv 10.1109/ACCESS.2021.3053302
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9330539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9330539</ieee_id><doaj_id>oai_doaj_org_article_55d24e7f70e840fe865dbae56cca8bcd</doaj_id><sourcerecordid>2483252935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-eb55d852f859f108475fcfe0d58df65483b9b024a30b6181de07809608c333813</originalsourceid><addsrcrecordid>eNpNUcFuwjAMjaZNGmJ8AZdKO8OcpGnTI-pgQ0LboeMcpakzFZWGJeXA369dEZovtmy_9yw_QuYUlpRC9rLK83VRLBkwuuQgOAd2RyaMJtmCC57c_6sfySyEA_Qh-5ZIJ-Rjo0MX5a5p6lC7NnrFDk03VNb5qDjqpon27VG3LVbRqvbGa9tFxSV0eAxR3UZ7X-p2mISTNvhEHqxuAs6ueUr2m_VX_r7Yfb5t89VuYWKQ3QJLISopmJUisxRknAprLEIlZGUTEUteZiWwWHMoEypphZBKyBKQhnMuKZ-S7chbOX1QJ18ftb8op2v113D-W2nf1aZB1SuxGFObAsoYLMpEVKVGkRijZWmqnut55Dp593PG0KmDO_u2P1-x_hImWNb_bkr4uGW8C8GjvalSUIMPavRBDT6oqw89aj6iakS8ITI-zDP-Cx6igm4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483252935</pqid></control><display><type>article</type><title>Fast Collision Detection for Small Unmanned Aircraft Systems in Urban Airspace</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zou, Yiyuan ; Zhang, Honghai ; Feng, Dikun ; Liu, Hao ; Zhong, Gang</creator><creatorcontrib>Zou, Yiyuan ; Zhang, Honghai ; Feng, Dikun ; Liu, Hao ; Zhong, Gang</creatorcontrib><description>With the dramatic development of small unmanned aircraft systems (sUAS), how to ensure sUAS safety operation has been a growing concern. This article proposes a fast probabilistic collision detection method for sUAS based on probability density function approximations. Firstly, cylindrical collision zones for sUAS and obstacles are established by geometrical methods for simplifying collision modeling, and instantaneous collision probability for sUAS is expressed by a triple integral. Secondly, a rapid estimation algorithm is derived for instantaneous collision probability, and then the predicted collision probability in probabilistic collision detection can be obtained by the maximum of instantaneous collision probabilities during the encounter. Randomized tests indicate that the average computation time of the proposed algorithm is less than 0.001s, and the Mean Absolute Error (MAE) is less than 0.01 and the Root Mean Squared Error (RMSE) is less than 0.02. Finally, numerical simulations are carried out to analyze the influence of parameters, including crossing angle, predicted separation at the closest point of approach (CPA), and predicted time to CPA, on collision probabilities. The optimal detection time for collision detection is also discussed in the different types of encounters. The collision detection method proposed in this article can provide support for real-time collision avoidance and the definition of dynamic safety bounds for sUAS.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3053302</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aircraft ; Aircraft accidents ; Aircraft detection ; Airspace ; Algorithms ; Atmospheric modeling ; Collision avoidance ; Collision detection ; Collision dynamics ; collision zone ; Estimation ; Gaussian distribution ; Mathematical models ; Probabilistic logic ; Probability ; Probability density functions ; probability estimation ; Root-mean-square errors ; Safety ; small unmanned aircraft systems ; Statistical analysis ; Trajectory ; Unmanned aerial vehicles ; Unmanned aircraft</subject><ispartof>IEEE access, 2021, Vol.9, p.16630-16641</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-eb55d852f859f108475fcfe0d58df65483b9b024a30b6181de07809608c333813</citedby><cites>FETCH-LOGICAL-c408t-eb55d852f859f108475fcfe0d58df65483b9b024a30b6181de07809608c333813</cites><orcidid>0000-0002-3026-538X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9330539$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Zou, Yiyuan</creatorcontrib><creatorcontrib>Zhang, Honghai</creatorcontrib><creatorcontrib>Feng, Dikun</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Zhong, Gang</creatorcontrib><title>Fast Collision Detection for Small Unmanned Aircraft Systems in Urban Airspace</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the dramatic development of small unmanned aircraft systems (sUAS), how to ensure sUAS safety operation has been a growing concern. This article proposes a fast probabilistic collision detection method for sUAS based on probability density function approximations. Firstly, cylindrical collision zones for sUAS and obstacles are established by geometrical methods for simplifying collision modeling, and instantaneous collision probability for sUAS is expressed by a triple integral. Secondly, a rapid estimation algorithm is derived for instantaneous collision probability, and then the predicted collision probability in probabilistic collision detection can be obtained by the maximum of instantaneous collision probabilities during the encounter. Randomized tests indicate that the average computation time of the proposed algorithm is less than 0.001s, and the Mean Absolute Error (MAE) is less than 0.01 and the Root Mean Squared Error (RMSE) is less than 0.02. Finally, numerical simulations are carried out to analyze the influence of parameters, including crossing angle, predicted separation at the closest point of approach (CPA), and predicted time to CPA, on collision probabilities. The optimal detection time for collision detection is also discussed in the different types of encounters. The collision detection method proposed in this article can provide support for real-time collision avoidance and the definition of dynamic safety bounds for sUAS.</description><subject>Aircraft</subject><subject>Aircraft accidents</subject><subject>Aircraft detection</subject><subject>Airspace</subject><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Collision avoidance</subject><subject>Collision detection</subject><subject>Collision dynamics</subject><subject>collision zone</subject><subject>Estimation</subject><subject>Gaussian distribution</subject><subject>Mathematical models</subject><subject>Probabilistic logic</subject><subject>Probability</subject><subject>Probability density functions</subject><subject>probability estimation</subject><subject>Root-mean-square errors</subject><subject>Safety</subject><subject>small unmanned aircraft systems</subject><subject>Statistical analysis</subject><subject>Trajectory</subject><subject>Unmanned aerial vehicles</subject><subject>Unmanned aircraft</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFuwjAMjaZNGmJ8AZdKO8OcpGnTI-pgQ0LboeMcpakzFZWGJeXA369dEZovtmy_9yw_QuYUlpRC9rLK83VRLBkwuuQgOAd2RyaMJtmCC57c_6sfySyEA_Qh-5ZIJ-Rjo0MX5a5p6lC7NnrFDk03VNb5qDjqpon27VG3LVbRqvbGa9tFxSV0eAxR3UZ7X-p2mISTNvhEHqxuAs6ueUr2m_VX_r7Yfb5t89VuYWKQ3QJLISopmJUisxRknAprLEIlZGUTEUteZiWwWHMoEypphZBKyBKQhnMuKZ-S7chbOX1QJ18ftb8op2v113D-W2nf1aZB1SuxGFObAsoYLMpEVKVGkRijZWmqnut55Dp593PG0KmDO_u2P1-x_hImWNb_bkr4uGW8C8GjvalSUIMPavRBDT6oqw89aj6iakS8ITI-zDP-Cx6igm4</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zou, Yiyuan</creator><creator>Zhang, Honghai</creator><creator>Feng, Dikun</creator><creator>Liu, Hao</creator><creator>Zhong, Gang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3026-538X</orcidid></search><sort><creationdate>2021</creationdate><title>Fast Collision Detection for Small Unmanned Aircraft Systems in Urban Airspace</title><author>Zou, Yiyuan ; Zhang, Honghai ; Feng, Dikun ; Liu, Hao ; Zhong, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-eb55d852f859f108475fcfe0d58df65483b9b024a30b6181de07809608c333813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aircraft</topic><topic>Aircraft accidents</topic><topic>Aircraft detection</topic><topic>Airspace</topic><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Collision avoidance</topic><topic>Collision detection</topic><topic>Collision dynamics</topic><topic>collision zone</topic><topic>Estimation</topic><topic>Gaussian distribution</topic><topic>Mathematical models</topic><topic>Probabilistic logic</topic><topic>Probability</topic><topic>Probability density functions</topic><topic>probability estimation</topic><topic>Root-mean-square errors</topic><topic>Safety</topic><topic>small unmanned aircraft systems</topic><topic>Statistical analysis</topic><topic>Trajectory</topic><topic>Unmanned aerial vehicles</topic><topic>Unmanned aircraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yiyuan</creatorcontrib><creatorcontrib>Zhang, Honghai</creatorcontrib><creatorcontrib>Feng, Dikun</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Zhong, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Yiyuan</au><au>Zhang, Honghai</au><au>Feng, Dikun</au><au>Liu, Hao</au><au>Zhong, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Collision Detection for Small Unmanned Aircraft Systems in Urban Airspace</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>16630</spage><epage>16641</epage><pages>16630-16641</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the dramatic development of small unmanned aircraft systems (sUAS), how to ensure sUAS safety operation has been a growing concern. This article proposes a fast probabilistic collision detection method for sUAS based on probability density function approximations. Firstly, cylindrical collision zones for sUAS and obstacles are established by geometrical methods for simplifying collision modeling, and instantaneous collision probability for sUAS is expressed by a triple integral. Secondly, a rapid estimation algorithm is derived for instantaneous collision probability, and then the predicted collision probability in probabilistic collision detection can be obtained by the maximum of instantaneous collision probabilities during the encounter. Randomized tests indicate that the average computation time of the proposed algorithm is less than 0.001s, and the Mean Absolute Error (MAE) is less than 0.01 and the Root Mean Squared Error (RMSE) is less than 0.02. Finally, numerical simulations are carried out to analyze the influence of parameters, including crossing angle, predicted separation at the closest point of approach (CPA), and predicted time to CPA, on collision probabilities. The optimal detection time for collision detection is also discussed in the different types of encounters. The collision detection method proposed in this article can provide support for real-time collision avoidance and the definition of dynamic safety bounds for sUAS.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3053302</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3026-538X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.16630-16641
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9330539
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aircraft
Aircraft accidents
Aircraft detection
Airspace
Algorithms
Atmospheric modeling
Collision avoidance
Collision detection
Collision dynamics
collision zone
Estimation
Gaussian distribution
Mathematical models
Probabilistic logic
Probability
Probability density functions
probability estimation
Root-mean-square errors
Safety
small unmanned aircraft systems
Statistical analysis
Trajectory
Unmanned aerial vehicles
Unmanned aircraft
title Fast Collision Detection for Small Unmanned Aircraft Systems in Urban Airspace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Collision%20Detection%20for%20Small%20Unmanned%20Aircraft%20Systems%20in%20Urban%20Airspace&rft.jtitle=IEEE%20access&rft.au=Zou,%20Yiyuan&rft.date=2021&rft.volume=9&rft.spage=16630&rft.epage=16641&rft.pages=16630-16641&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3053302&rft_dat=%3Cproquest_ieee_%3E2483252935%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483252935&rft_id=info:pmid/&rft_ieee_id=9330539&rft_doaj_id=oai_doaj_org_article_55d24e7f70e840fe865dbae56cca8bcd&rfr_iscdi=true