Finite-Time Approximation-Free Attitude Control of Quadrotors: Theory and Experiments

In this article, a novel finite-time approximation-free control scheme is proposed for the attitude tracking of quadrotor unmanned aerial vehicles. Prescribed performance functions are employed to transform the original attitude tracking problem into an alternative system stabilization problem. By i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2021-06, Vol.57 (3), p.1780-1792
Hauptverfasser: Chen, Qiang, Ye, Yan, Hu, Zhongjun, Na, Jing, Wang, Shubo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1792
container_issue 3
container_start_page 1780
container_title IEEE transactions on aerospace and electronic systems
container_volume 57
creator Chen, Qiang
Ye, Yan
Hu, Zhongjun
Na, Jing
Wang, Shubo
description In this article, a novel finite-time approximation-free control scheme is proposed for the attitude tracking of quadrotor unmanned aerial vehicles. Prescribed performance functions are employed to transform the original attitude tracking problem into an alternative system stabilization problem. By incorporating a finite-time error compensation mechanism into the recursive control design, the finite-time error convergence, and singularity-free property can be guaranteed simultaneously. Compared with the existing approximation-based control schemes, the presented controller has a simple cascade proportional-like structure and less computational burden, and the coupling among the roll, pitch, and yaw dynamics can be successfully handled without requiring any model information or function approximations. With the proposed control scheme, the attitude tracking error can be retained within a prescribed boundary and converge into a sufficiently small region around origin in finite time. Extensive comparative experiments on a three degree-of-freedom (3-DOF) quadrotor platform are performed to validate the effectiveness of the proposed control scheme.
doi_str_mv 10.1109/TAES.2021.3050647
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9328470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9328470</ieee_id><sourcerecordid>2539353193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-22a45127f24831f304de6af48d7910b502de9f6c2030c13592b6a88614322aa23</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwp-Nx5k5u0jW9jbCoMRKzPIWsT7NiamqQw_70ZGz5d7uWccw8fIfcUZpSCfKrny88ZA0ZnCAIKXl6QCRWizGUBeEkmALTKJRP0mtyEsE0rrzhOyNeq67to8rrbm2w-DN4dur2OnevzlTfpFGMXx9ZkC9dH73aZs9nHqFvvovPhOau_jfO_me7bbHkYjE8xfQy35MrqXTB35zlNf5b14jVfv7-8LebrvGESY86Y5oKy0jJeIbUIvDWFtrxqS0lhI4C1RtqiYYDQUBSSbQpdVQXlmKya4ZQ8nnJT75_RhKi2bvR9eqmYQIkCqcSkoidV410I3lg1pJ7a_yoK6khPHempIz11ppc8DydPZ4z510tkFS8B_wDweWoi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539353193</pqid></control><display><type>article</type><title>Finite-Time Approximation-Free Attitude Control of Quadrotors: Theory and Experiments</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Qiang ; Ye, Yan ; Hu, Zhongjun ; Na, Jing ; Wang, Shubo</creator><creatorcontrib>Chen, Qiang ; Ye, Yan ; Hu, Zhongjun ; Na, Jing ; Wang, Shubo</creatorcontrib><description>In this article, a novel finite-time approximation-free control scheme is proposed for the attitude tracking of quadrotor unmanned aerial vehicles. Prescribed performance functions are employed to transform the original attitude tracking problem into an alternative system stabilization problem. By incorporating a finite-time error compensation mechanism into the recursive control design, the finite-time error convergence, and singularity-free property can be guaranteed simultaneously. Compared with the existing approximation-based control schemes, the presented controller has a simple cascade proportional-like structure and less computational burden, and the coupling among the roll, pitch, and yaw dynamics can be successfully handled without requiring any model information or function approximations. With the proposed control scheme, the attitude tracking error can be retained within a prescribed boundary and converge into a sufficiently small region around origin in finite time. Extensive comparative experiments on a three degree-of-freedom (3-DOF) quadrotor platform are performed to validate the effectiveness of the proposed control scheme.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2021.3050647</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Attitude control ; Attitude tracking ; Backstepping ; backstepping design ; Convergence ; Degrees of freedom ; Error compensation ; finite-time control ; Mathematical analysis ; Pitch (inclination) ; quadrotor unmanned aerial vehicle (QUAV) ; Rolling motion ; Rotary wing aircraft ; Sliding mode control ; Stability analysis ; Tracking control ; Tracking errors ; Tracking problem ; Uncertainty ; Unmanned aerial vehicles ; Unmanned helicopters ; Yaw</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2021-06, Vol.57 (3), p.1780-1792</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-22a45127f24831f304de6af48d7910b502de9f6c2030c13592b6a88614322aa23</citedby><cites>FETCH-LOGICAL-c293t-22a45127f24831f304de6af48d7910b502de9f6c2030c13592b6a88614322aa23</cites><orcidid>0000-0002-3067-1580 ; 0000-0002-4881-5327 ; 0000-0001-5869-0436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9328470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9328470$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Ye, Yan</creatorcontrib><creatorcontrib>Hu, Zhongjun</creatorcontrib><creatorcontrib>Na, Jing</creatorcontrib><creatorcontrib>Wang, Shubo</creatorcontrib><title>Finite-Time Approximation-Free Attitude Control of Quadrotors: Theory and Experiments</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>In this article, a novel finite-time approximation-free control scheme is proposed for the attitude tracking of quadrotor unmanned aerial vehicles. Prescribed performance functions are employed to transform the original attitude tracking problem into an alternative system stabilization problem. By incorporating a finite-time error compensation mechanism into the recursive control design, the finite-time error convergence, and singularity-free property can be guaranteed simultaneously. Compared with the existing approximation-based control schemes, the presented controller has a simple cascade proportional-like structure and less computational burden, and the coupling among the roll, pitch, and yaw dynamics can be successfully handled without requiring any model information or function approximations. With the proposed control scheme, the attitude tracking error can be retained within a prescribed boundary and converge into a sufficiently small region around origin in finite time. Extensive comparative experiments on a three degree-of-freedom (3-DOF) quadrotor platform are performed to validate the effectiveness of the proposed control scheme.</description><subject>Approximation</subject><subject>Attitude control</subject><subject>Attitude tracking</subject><subject>Backstepping</subject><subject>backstepping design</subject><subject>Convergence</subject><subject>Degrees of freedom</subject><subject>Error compensation</subject><subject>finite-time control</subject><subject>Mathematical analysis</subject><subject>Pitch (inclination)</subject><subject>quadrotor unmanned aerial vehicle (QUAV)</subject><subject>Rolling motion</subject><subject>Rotary wing aircraft</subject><subject>Sliding mode control</subject><subject>Stability analysis</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Tracking problem</subject><subject>Uncertainty</subject><subject>Unmanned aerial vehicles</subject><subject>Unmanned helicopters</subject><subject>Yaw</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwp-Nx5k5u0jW9jbCoMRKzPIWsT7NiamqQw_70ZGz5d7uWccw8fIfcUZpSCfKrny88ZA0ZnCAIKXl6QCRWizGUBeEkmALTKJRP0mtyEsE0rrzhOyNeq67to8rrbm2w-DN4dur2OnevzlTfpFGMXx9ZkC9dH73aZs9nHqFvvovPhOau_jfO_me7bbHkYjE8xfQy35MrqXTB35zlNf5b14jVfv7-8LebrvGESY86Y5oKy0jJeIbUIvDWFtrxqS0lhI4C1RtqiYYDQUBSSbQpdVQXlmKya4ZQ8nnJT75_RhKi2bvR9eqmYQIkCqcSkoidV410I3lg1pJ7a_yoK6khPHempIz11ppc8DydPZ4z510tkFS8B_wDweWoi</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Chen, Qiang</creator><creator>Ye, Yan</creator><creator>Hu, Zhongjun</creator><creator>Na, Jing</creator><creator>Wang, Shubo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3067-1580</orcidid><orcidid>https://orcid.org/0000-0002-4881-5327</orcidid><orcidid>https://orcid.org/0000-0001-5869-0436</orcidid></search><sort><creationdate>20210601</creationdate><title>Finite-Time Approximation-Free Attitude Control of Quadrotors: Theory and Experiments</title><author>Chen, Qiang ; Ye, Yan ; Hu, Zhongjun ; Na, Jing ; Wang, Shubo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-22a45127f24831f304de6af48d7910b502de9f6c2030c13592b6a88614322aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Attitude control</topic><topic>Attitude tracking</topic><topic>Backstepping</topic><topic>backstepping design</topic><topic>Convergence</topic><topic>Degrees of freedom</topic><topic>Error compensation</topic><topic>finite-time control</topic><topic>Mathematical analysis</topic><topic>Pitch (inclination)</topic><topic>quadrotor unmanned aerial vehicle (QUAV)</topic><topic>Rolling motion</topic><topic>Rotary wing aircraft</topic><topic>Sliding mode control</topic><topic>Stability analysis</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Tracking problem</topic><topic>Uncertainty</topic><topic>Unmanned aerial vehicles</topic><topic>Unmanned helicopters</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Ye, Yan</creatorcontrib><creatorcontrib>Hu, Zhongjun</creatorcontrib><creatorcontrib>Na, Jing</creatorcontrib><creatorcontrib>Wang, Shubo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Qiang</au><au>Ye, Yan</au><au>Hu, Zhongjun</au><au>Na, Jing</au><au>Wang, Shubo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Time Approximation-Free Attitude Control of Quadrotors: Theory and Experiments</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>57</volume><issue>3</issue><spage>1780</spage><epage>1792</epage><pages>1780-1792</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>In this article, a novel finite-time approximation-free control scheme is proposed for the attitude tracking of quadrotor unmanned aerial vehicles. Prescribed performance functions are employed to transform the original attitude tracking problem into an alternative system stabilization problem. By incorporating a finite-time error compensation mechanism into the recursive control design, the finite-time error convergence, and singularity-free property can be guaranteed simultaneously. Compared with the existing approximation-based control schemes, the presented controller has a simple cascade proportional-like structure and less computational burden, and the coupling among the roll, pitch, and yaw dynamics can be successfully handled without requiring any model information or function approximations. With the proposed control scheme, the attitude tracking error can be retained within a prescribed boundary and converge into a sufficiently small region around origin in finite time. Extensive comparative experiments on a three degree-of-freedom (3-DOF) quadrotor platform are performed to validate the effectiveness of the proposed control scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2021.3050647</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3067-1580</orcidid><orcidid>https://orcid.org/0000-0002-4881-5327</orcidid><orcidid>https://orcid.org/0000-0001-5869-0436</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2021-06, Vol.57 (3), p.1780-1792
issn 0018-9251
1557-9603
language eng
recordid cdi_ieee_primary_9328470
source IEEE Electronic Library (IEL)
subjects Approximation
Attitude control
Attitude tracking
Backstepping
backstepping design
Convergence
Degrees of freedom
Error compensation
finite-time control
Mathematical analysis
Pitch (inclination)
quadrotor unmanned aerial vehicle (QUAV)
Rolling motion
Rotary wing aircraft
Sliding mode control
Stability analysis
Tracking control
Tracking errors
Tracking problem
Uncertainty
Unmanned aerial vehicles
Unmanned helicopters
Yaw
title Finite-Time Approximation-Free Attitude Control of Quadrotors: Theory and Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Time%20Approximation-Free%20Attitude%20Control%20of%20Quadrotors:%20Theory%20and%20Experiments&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Chen,%20Qiang&rft.date=2021-06-01&rft.volume=57&rft.issue=3&rft.spage=1780&rft.epage=1792&rft.pages=1780-1792&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2021.3050647&rft_dat=%3Cproquest_RIE%3E2539353193%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539353193&rft_id=info:pmid/&rft_ieee_id=9328470&rfr_iscdi=true