Finite-Time Approximation-Free Attitude Control of Quadrotors: Theory and Experiments
In this article, a novel finite-time approximation-free control scheme is proposed for the attitude tracking of quadrotor unmanned aerial vehicles. Prescribed performance functions are employed to transform the original attitude tracking problem into an alternative system stabilization problem. By i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2021-06, Vol.57 (3), p.1780-1792 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1792 |
---|---|
container_issue | 3 |
container_start_page | 1780 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 57 |
creator | Chen, Qiang Ye, Yan Hu, Zhongjun Na, Jing Wang, Shubo |
description | In this article, a novel finite-time approximation-free control scheme is proposed for the attitude tracking of quadrotor unmanned aerial vehicles. Prescribed performance functions are employed to transform the original attitude tracking problem into an alternative system stabilization problem. By incorporating a finite-time error compensation mechanism into the recursive control design, the finite-time error convergence, and singularity-free property can be guaranteed simultaneously. Compared with the existing approximation-based control schemes, the presented controller has a simple cascade proportional-like structure and less computational burden, and the coupling among the roll, pitch, and yaw dynamics can be successfully handled without requiring any model information or function approximations. With the proposed control scheme, the attitude tracking error can be retained within a prescribed boundary and converge into a sufficiently small region around origin in finite time. Extensive comparative experiments on a three degree-of-freedom (3-DOF) quadrotor platform are performed to validate the effectiveness of the proposed control scheme. |
doi_str_mv | 10.1109/TAES.2021.3050647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9328470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9328470</ieee_id><sourcerecordid>2539353193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-22a45127f24831f304de6af48d7910b502de9f6c2030c13592b6a88614322aa23</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwp-Nx5k5u0jW9jbCoMRKzPIWsT7NiamqQw_70ZGz5d7uWccw8fIfcUZpSCfKrny88ZA0ZnCAIKXl6QCRWizGUBeEkmALTKJRP0mtyEsE0rrzhOyNeq67to8rrbm2w-DN4dur2OnevzlTfpFGMXx9ZkC9dH73aZs9nHqFvvovPhOau_jfO_me7bbHkYjE8xfQy35MrqXTB35zlNf5b14jVfv7-8LebrvGESY86Y5oKy0jJeIbUIvDWFtrxqS0lhI4C1RtqiYYDQUBSSbQpdVQXlmKya4ZQ8nnJT75_RhKi2bvR9eqmYQIkCqcSkoidV410I3lg1pJ7a_yoK6khPHempIz11ppc8DydPZ4z510tkFS8B_wDweWoi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539353193</pqid></control><display><type>article</type><title>Finite-Time Approximation-Free Attitude Control of Quadrotors: Theory and Experiments</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Qiang ; Ye, Yan ; Hu, Zhongjun ; Na, Jing ; Wang, Shubo</creator><creatorcontrib>Chen, Qiang ; Ye, Yan ; Hu, Zhongjun ; Na, Jing ; Wang, Shubo</creatorcontrib><description>In this article, a novel finite-time approximation-free control scheme is proposed for the attitude tracking of quadrotor unmanned aerial vehicles. Prescribed performance functions are employed to transform the original attitude tracking problem into an alternative system stabilization problem. By incorporating a finite-time error compensation mechanism into the recursive control design, the finite-time error convergence, and singularity-free property can be guaranteed simultaneously. Compared with the existing approximation-based control schemes, the presented controller has a simple cascade proportional-like structure and less computational burden, and the coupling among the roll, pitch, and yaw dynamics can be successfully handled without requiring any model information or function approximations. With the proposed control scheme, the attitude tracking error can be retained within a prescribed boundary and converge into a sufficiently small region around origin in finite time. Extensive comparative experiments on a three degree-of-freedom (3-DOF) quadrotor platform are performed to validate the effectiveness of the proposed control scheme.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2021.3050647</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Attitude control ; Attitude tracking ; Backstepping ; backstepping design ; Convergence ; Degrees of freedom ; Error compensation ; finite-time control ; Mathematical analysis ; Pitch (inclination) ; quadrotor unmanned aerial vehicle (QUAV) ; Rolling motion ; Rotary wing aircraft ; Sliding mode control ; Stability analysis ; Tracking control ; Tracking errors ; Tracking problem ; Uncertainty ; Unmanned aerial vehicles ; Unmanned helicopters ; Yaw</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2021-06, Vol.57 (3), p.1780-1792</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-22a45127f24831f304de6af48d7910b502de9f6c2030c13592b6a88614322aa23</citedby><cites>FETCH-LOGICAL-c293t-22a45127f24831f304de6af48d7910b502de9f6c2030c13592b6a88614322aa23</cites><orcidid>0000-0002-3067-1580 ; 0000-0002-4881-5327 ; 0000-0001-5869-0436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9328470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9328470$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Ye, Yan</creatorcontrib><creatorcontrib>Hu, Zhongjun</creatorcontrib><creatorcontrib>Na, Jing</creatorcontrib><creatorcontrib>Wang, Shubo</creatorcontrib><title>Finite-Time Approximation-Free Attitude Control of Quadrotors: Theory and Experiments</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>In this article, a novel finite-time approximation-free control scheme is proposed for the attitude tracking of quadrotor unmanned aerial vehicles. Prescribed performance functions are employed to transform the original attitude tracking problem into an alternative system stabilization problem. By incorporating a finite-time error compensation mechanism into the recursive control design, the finite-time error convergence, and singularity-free property can be guaranteed simultaneously. Compared with the existing approximation-based control schemes, the presented controller has a simple cascade proportional-like structure and less computational burden, and the coupling among the roll, pitch, and yaw dynamics can be successfully handled without requiring any model information or function approximations. With the proposed control scheme, the attitude tracking error can be retained within a prescribed boundary and converge into a sufficiently small region around origin in finite time. Extensive comparative experiments on a three degree-of-freedom (3-DOF) quadrotor platform are performed to validate the effectiveness of the proposed control scheme.</description><subject>Approximation</subject><subject>Attitude control</subject><subject>Attitude tracking</subject><subject>Backstepping</subject><subject>backstepping design</subject><subject>Convergence</subject><subject>Degrees of freedom</subject><subject>Error compensation</subject><subject>finite-time control</subject><subject>Mathematical analysis</subject><subject>Pitch (inclination)</subject><subject>quadrotor unmanned aerial vehicle (QUAV)</subject><subject>Rolling motion</subject><subject>Rotary wing aircraft</subject><subject>Sliding mode control</subject><subject>Stability analysis</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Tracking problem</subject><subject>Uncertainty</subject><subject>Unmanned aerial vehicles</subject><subject>Unmanned helicopters</subject><subject>Yaw</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwp-Nx5k5u0jW9jbCoMRKzPIWsT7NiamqQw_70ZGz5d7uWccw8fIfcUZpSCfKrny88ZA0ZnCAIKXl6QCRWizGUBeEkmALTKJRP0mtyEsE0rrzhOyNeq67to8rrbm2w-DN4dur2OnevzlTfpFGMXx9ZkC9dH73aZs9nHqFvvovPhOau_jfO_me7bbHkYjE8xfQy35MrqXTB35zlNf5b14jVfv7-8LebrvGESY86Y5oKy0jJeIbUIvDWFtrxqS0lhI4C1RtqiYYDQUBSSbQpdVQXlmKya4ZQ8nnJT75_RhKi2bvR9eqmYQIkCqcSkoidV410I3lg1pJ7a_yoK6khPHempIz11ppc8DydPZ4z510tkFS8B_wDweWoi</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Chen, Qiang</creator><creator>Ye, Yan</creator><creator>Hu, Zhongjun</creator><creator>Na, Jing</creator><creator>Wang, Shubo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3067-1580</orcidid><orcidid>https://orcid.org/0000-0002-4881-5327</orcidid><orcidid>https://orcid.org/0000-0001-5869-0436</orcidid></search><sort><creationdate>20210601</creationdate><title>Finite-Time Approximation-Free Attitude Control of Quadrotors: Theory and Experiments</title><author>Chen, Qiang ; Ye, Yan ; Hu, Zhongjun ; Na, Jing ; Wang, Shubo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-22a45127f24831f304de6af48d7910b502de9f6c2030c13592b6a88614322aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Attitude control</topic><topic>Attitude tracking</topic><topic>Backstepping</topic><topic>backstepping design</topic><topic>Convergence</topic><topic>Degrees of freedom</topic><topic>Error compensation</topic><topic>finite-time control</topic><topic>Mathematical analysis</topic><topic>Pitch (inclination)</topic><topic>quadrotor unmanned aerial vehicle (QUAV)</topic><topic>Rolling motion</topic><topic>Rotary wing aircraft</topic><topic>Sliding mode control</topic><topic>Stability analysis</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Tracking problem</topic><topic>Uncertainty</topic><topic>Unmanned aerial vehicles</topic><topic>Unmanned helicopters</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Ye, Yan</creatorcontrib><creatorcontrib>Hu, Zhongjun</creatorcontrib><creatorcontrib>Na, Jing</creatorcontrib><creatorcontrib>Wang, Shubo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Qiang</au><au>Ye, Yan</au><au>Hu, Zhongjun</au><au>Na, Jing</au><au>Wang, Shubo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Time Approximation-Free Attitude Control of Quadrotors: Theory and Experiments</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>57</volume><issue>3</issue><spage>1780</spage><epage>1792</epage><pages>1780-1792</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>In this article, a novel finite-time approximation-free control scheme is proposed for the attitude tracking of quadrotor unmanned aerial vehicles. Prescribed performance functions are employed to transform the original attitude tracking problem into an alternative system stabilization problem. By incorporating a finite-time error compensation mechanism into the recursive control design, the finite-time error convergence, and singularity-free property can be guaranteed simultaneously. Compared with the existing approximation-based control schemes, the presented controller has a simple cascade proportional-like structure and less computational burden, and the coupling among the roll, pitch, and yaw dynamics can be successfully handled without requiring any model information or function approximations. With the proposed control scheme, the attitude tracking error can be retained within a prescribed boundary and converge into a sufficiently small region around origin in finite time. Extensive comparative experiments on a three degree-of-freedom (3-DOF) quadrotor platform are performed to validate the effectiveness of the proposed control scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2021.3050647</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3067-1580</orcidid><orcidid>https://orcid.org/0000-0002-4881-5327</orcidid><orcidid>https://orcid.org/0000-0001-5869-0436</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2021-06, Vol.57 (3), p.1780-1792 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_ieee_primary_9328470 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Attitude control Attitude tracking Backstepping backstepping design Convergence Degrees of freedom Error compensation finite-time control Mathematical analysis Pitch (inclination) quadrotor unmanned aerial vehicle (QUAV) Rolling motion Rotary wing aircraft Sliding mode control Stability analysis Tracking control Tracking errors Tracking problem Uncertainty Unmanned aerial vehicles Unmanned helicopters Yaw |
title | Finite-Time Approximation-Free Attitude Control of Quadrotors: Theory and Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Time%20Approximation-Free%20Attitude%20Control%20of%20Quadrotors:%20Theory%20and%20Experiments&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Chen,%20Qiang&rft.date=2021-06-01&rft.volume=57&rft.issue=3&rft.spage=1780&rft.epage=1792&rft.pages=1780-1792&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2021.3050647&rft_dat=%3Cproquest_RIE%3E2539353193%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539353193&rft_id=info:pmid/&rft_ieee_id=9328470&rfr_iscdi=true |