Software Defect Prediction Based on Gated Hierarchical LSTMs
Software defect prediction, aimed at assisting software practitioners in allocating test resources more efficiently, predicts the potential defective modules in software products. With the development of defect prediction technology, the inability of traditional software features to capture semantic...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on reliability 2021-06, Vol.70 (2), p.711-727 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 727 |
---|---|
container_issue | 2 |
container_start_page | 711 |
container_title | IEEE transactions on reliability |
container_volume | 70 |
creator | Wang, Hao Zhuang, Weiyuan Zhang, Xiaofang |
description | Software defect prediction, aimed at assisting software practitioners in allocating test resources more efficiently, predicts the potential defective modules in software products. With the development of defect prediction technology, the inability of traditional software features to capture semantic information is exposed, hence related researchers have turned to semantic features to build defect prediction models. However, sometimes traditional features such as lines of code (LOC) also play an important role in defect prediction. Most of the existing researches only focus on using a single type of feature as the input of the model. In this article, a defect prediction method based on gated hierarchical long short-term memory networks (GH-LSTMs) is proposed, which uses hierarchical LSTM networks to extract both semantic features from word embeddings of abstract syntax trees (ASTs) of source code files, and traditional features provided by the PROMISE repository. More importantly, we adopt a gated fusion strategy to combine the outputs of the hierarchical networks properly. Experimental results show that GH-LSTMs outperforms existing methods under both noneffort-aware and effort-aware scenarios. |
doi_str_mv | 10.1109/TR.2020.3047396 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9326336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9326336</ieee_id><sourcerecordid>2539351831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-38161e7f5c5d12f870e378577c3739caf4c419209015b32280ca7d67a99057ca3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKtnD14WPG-byWw2CXjRqlWoKO16DjE7i1tqtyZbxH9vSouneQPvzTw-xi6BjwC4GVfzkeCCj5AXCk15xAYgpc5BCThmA85B50YKc8rOYlymtSiMHrCbRdf0Py5Qdk8N-T57C1S3vm-7dXbnItVZElPXJ_HUUnDBf7berbLZonqJ5-ykcatIF4c5ZO-PD9XkKZ-9Tp8nt7PcC236HDWUQKqRXtYgGq04odJSKY-pqXdN4QswghsO8gOF0Nw7VZfKGcOl8g6H7Hp_dxO67y3F3i67bVinl1ZINChBIyTXeO_yoYsxUGM3of1y4dcCtztEtprbHSJ7QJQSV_tES0T_boOiRCzxD6LJXu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539351831</pqid></control><display><type>article</type><title>Software Defect Prediction Based on Gated Hierarchical LSTMs</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Hao ; Zhuang, Weiyuan ; Zhang, Xiaofang</creator><creatorcontrib>Wang, Hao ; Zhuang, Weiyuan ; Zhang, Xiaofang</creatorcontrib><description>Software defect prediction, aimed at assisting software practitioners in allocating test resources more efficiently, predicts the potential defective modules in software products. With the development of defect prediction technology, the inability of traditional software features to capture semantic information is exposed, hence related researchers have turned to semantic features to build defect prediction models. However, sometimes traditional features such as lines of code (LOC) also play an important role in defect prediction. Most of the existing researches only focus on using a single type of feature as the input of the model. In this article, a defect prediction method based on gated hierarchical long short-term memory networks (GH-LSTMs) is proposed, which uses hierarchical LSTM networks to extract both semantic features from word embeddings of abstract syntax trees (ASTs) of source code files, and traditional features provided by the PROMISE repository. More importantly, we adopt a gated fusion strategy to combine the outputs of the hierarchical networks properly. Experimental results show that GH-LSTMs outperforms existing methods under both noneffort-aware and effort-aware scenarios.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2020.3047396</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Abstract syntax tree (AST) ; Feature extraction ; hierarchical model ; Logic gates ; long short-term memory networks (LSTM) ; Networks ; Neurons ; Prediction models ; Predictive models ; Recurrent neural networks ; Semantics ; Software ; software defect prediction ; Source code</subject><ispartof>IEEE transactions on reliability, 2021-06, Vol.70 (2), p.711-727</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-38161e7f5c5d12f870e378577c3739caf4c419209015b32280ca7d67a99057ca3</citedby><cites>FETCH-LOGICAL-c289t-38161e7f5c5d12f870e378577c3739caf4c419209015b32280ca7d67a99057ca3</cites><orcidid>0000-0002-8667-0456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9326336$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9326336$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Zhuang, Weiyuan</creatorcontrib><creatorcontrib>Zhang, Xiaofang</creatorcontrib><title>Software Defect Prediction Based on Gated Hierarchical LSTMs</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Software defect prediction, aimed at assisting software practitioners in allocating test resources more efficiently, predicts the potential defective modules in software products. With the development of defect prediction technology, the inability of traditional software features to capture semantic information is exposed, hence related researchers have turned to semantic features to build defect prediction models. However, sometimes traditional features such as lines of code (LOC) also play an important role in defect prediction. Most of the existing researches only focus on using a single type of feature as the input of the model. In this article, a defect prediction method based on gated hierarchical long short-term memory networks (GH-LSTMs) is proposed, which uses hierarchical LSTM networks to extract both semantic features from word embeddings of abstract syntax trees (ASTs) of source code files, and traditional features provided by the PROMISE repository. More importantly, we adopt a gated fusion strategy to combine the outputs of the hierarchical networks properly. Experimental results show that GH-LSTMs outperforms existing methods under both noneffort-aware and effort-aware scenarios.</description><subject>Abstract syntax tree (AST)</subject><subject>Feature extraction</subject><subject>hierarchical model</subject><subject>Logic gates</subject><subject>long short-term memory networks (LSTM)</subject><subject>Networks</subject><subject>Neurons</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Recurrent neural networks</subject><subject>Semantics</subject><subject>Software</subject><subject>software defect prediction</subject><subject>Source code</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKtnD14WPG-byWw2CXjRqlWoKO16DjE7i1tqtyZbxH9vSouneQPvzTw-xi6BjwC4GVfzkeCCj5AXCk15xAYgpc5BCThmA85B50YKc8rOYlymtSiMHrCbRdf0Py5Qdk8N-T57C1S3vm-7dXbnItVZElPXJ_HUUnDBf7berbLZonqJ5-ykcatIF4c5ZO-PD9XkKZ-9Tp8nt7PcC236HDWUQKqRXtYgGq04odJSKY-pqXdN4QswghsO8gOF0Nw7VZfKGcOl8g6H7Hp_dxO67y3F3i67bVinl1ZINChBIyTXeO_yoYsxUGM3of1y4dcCtztEtprbHSJ7QJQSV_tES0T_boOiRCzxD6LJXu8</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Wang, Hao</creator><creator>Zhuang, Weiyuan</creator><creator>Zhang, Xiaofang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8667-0456</orcidid></search><sort><creationdate>202106</creationdate><title>Software Defect Prediction Based on Gated Hierarchical LSTMs</title><author>Wang, Hao ; Zhuang, Weiyuan ; Zhang, Xiaofang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-38161e7f5c5d12f870e378577c3739caf4c419209015b32280ca7d67a99057ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract syntax tree (AST)</topic><topic>Feature extraction</topic><topic>hierarchical model</topic><topic>Logic gates</topic><topic>long short-term memory networks (LSTM)</topic><topic>Networks</topic><topic>Neurons</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Recurrent neural networks</topic><topic>Semantics</topic><topic>Software</topic><topic>software defect prediction</topic><topic>Source code</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Zhuang, Weiyuan</creatorcontrib><creatorcontrib>Zhang, Xiaofang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Hao</au><au>Zhuang, Weiyuan</au><au>Zhang, Xiaofang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Software Defect Prediction Based on Gated Hierarchical LSTMs</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2021-06</date><risdate>2021</risdate><volume>70</volume><issue>2</issue><spage>711</spage><epage>727</epage><pages>711-727</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Software defect prediction, aimed at assisting software practitioners in allocating test resources more efficiently, predicts the potential defective modules in software products. With the development of defect prediction technology, the inability of traditional software features to capture semantic information is exposed, hence related researchers have turned to semantic features to build defect prediction models. However, sometimes traditional features such as lines of code (LOC) also play an important role in defect prediction. Most of the existing researches only focus on using a single type of feature as the input of the model. In this article, a defect prediction method based on gated hierarchical long short-term memory networks (GH-LSTMs) is proposed, which uses hierarchical LSTM networks to extract both semantic features from word embeddings of abstract syntax trees (ASTs) of source code files, and traditional features provided by the PROMISE repository. More importantly, we adopt a gated fusion strategy to combine the outputs of the hierarchical networks properly. Experimental results show that GH-LSTMs outperforms existing methods under both noneffort-aware and effort-aware scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2020.3047396</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8667-0456</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2021-06, Vol.70 (2), p.711-727 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_ieee_primary_9326336 |
source | IEEE Electronic Library (IEL) |
subjects | Abstract syntax tree (AST) Feature extraction hierarchical model Logic gates long short-term memory networks (LSTM) Networks Neurons Prediction models Predictive models Recurrent neural networks Semantics Software software defect prediction Source code |
title | Software Defect Prediction Based on Gated Hierarchical LSTMs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T03%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Software%20Defect%20Prediction%20Based%20on%20Gated%20Hierarchical%20LSTMs&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Wang,%20Hao&rft.date=2021-06&rft.volume=70&rft.issue=2&rft.spage=711&rft.epage=727&rft.pages=711-727&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2020.3047396&rft_dat=%3Cproquest_RIE%3E2539351831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539351831&rft_id=info:pmid/&rft_ieee_id=9326336&rfr_iscdi=true |