Small Waterbody Extraction With Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images
Water extraction is an important prerequisite for the protection and rational use of water resources. The existing waterbody extraction methods are mostly used for the extraction of large- and medium-sized waterbodies, whereas less attention has been paid to small waterbodies. In this letter, we ada...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Qin, Peng Cai, Yulin Wang, Xueli |
description | Water extraction is an important prerequisite for the protection and rational use of water resources. The existing waterbody extraction methods are mostly used for the extraction of large- and medium-sized waterbodies, whereas less attention has been paid to small waterbodies. In this letter, we adapt the U-Net convolutional neural network to extract small waterbodies from Zhuhai-1 satellite hyperspectral remote sensing image. To the best of our knowledge, this is the first time that U-Net framework has been used for small waterbody extraction from satellite hyperspectral image. Specifically, we increase the depth of the network, and because there are far more negative samples (non-waterbodies) in remote sensing data than positive samples (waterbodies), Intersection over Union (IoU) is used as an evaluation indicator during model training. The results show that this method can accurately extract small waterbodies in the complex scenes. Compared with the traditional methods of support vector machine and the normalized waterbody index, the accuracy of this method is significantly higher, and both the Recall and the Precision are close to 90%. |
doi_str_mv | 10.1109/LGRS.2020.3047918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9325017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9325017</ieee_id><sourcerecordid>2615512947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7a28cf8144295280338ba56f2121e811b2bd4c7e9e0d57e49980674f470d8e253</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-AOOliefFttvS9mgIAgnRBCQYL013dxaW7Ae2xci_d1eIp5nD874zeRC6p2RAKdFP88liOWCEkUFMuNRUXaAeFUJFREh62e1cREKrj2t04_2OEMaVkj1kl5UtS7y2AVzSZEc8_gnOpqFoarwuwhbPqr1rviHDq-gVAl75ot7gz-1ha4uI4ulxD87vIW1DJV5A1QTAS6j_qFllN-Bv0VVuSw9359lHq5fx-2gazd8ms9HzPEqZjkMkLVNprijnTAumSByrxIphziijoChNWJLxVIIGkgkJXGtFhpLnXJJMARNxHz2eett_vw7gg9k1B1e3Jw0btioo01y2FD1RqWu8d5CbvSsq646GEtOZNJ1J05k0Z5Nt5uGUKQDgn9cxE4TK-Be4325Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615512947</pqid></control><display><type>article</type><title>Small Waterbody Extraction With Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>Qin, Peng ; Cai, Yulin ; Wang, Xueli</creator><creatorcontrib>Qin, Peng ; Cai, Yulin ; Wang, Xueli</creatorcontrib><description>Water extraction is an important prerequisite for the protection and rational use of water resources. The existing waterbody extraction methods are mostly used for the extraction of large- and medium-sized waterbodies, whereas less attention has been paid to small waterbodies. In this letter, we adapt the U-Net convolutional neural network to extract small waterbodies from Zhuhai-1 satellite hyperspectral remote sensing image. To the best of our knowledge, this is the first time that U-Net framework has been used for small waterbody extraction from satellite hyperspectral image. Specifically, we increase the depth of the network, and because there are far more negative samples (non-waterbodies) in remote sensing data than positive samples (waterbodies), Intersection over Union (IoU) is used as an evaluation indicator during model training. The results show that this method can accurately extract small waterbodies in the complex scenes. Compared with the traditional methods of support vector machine and the normalized waterbody index, the accuracy of this method is significantly higher, and both the Recall and the Precision are close to 90%.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2020.3047918</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Data mining ; Data models ; Hyperspectral imaging ; Hyperspectral remote sensing ; Methods ; Neural networks ; Remote sensing ; Rivers ; Satellite imagery ; Satellites ; small waterbody ; Support vector machines ; Training ; U-Net ; Water resources ; Water use ; Zhuhai-1</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7a28cf8144295280338ba56f2121e811b2bd4c7e9e0d57e49980674f470d8e253</citedby><cites>FETCH-LOGICAL-c293t-7a28cf8144295280338ba56f2121e811b2bd4c7e9e0d57e49980674f470d8e253</cites><orcidid>0000-0002-7405-1113 ; 0000-0002-5291-6518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9325017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4021,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9325017$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qin, Peng</creatorcontrib><creatorcontrib>Cai, Yulin</creatorcontrib><creatorcontrib>Wang, Xueli</creatorcontrib><title>Small Waterbody Extraction With Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Water extraction is an important prerequisite for the protection and rational use of water resources. The existing waterbody extraction methods are mostly used for the extraction of large- and medium-sized waterbodies, whereas less attention has been paid to small waterbodies. In this letter, we adapt the U-Net convolutional neural network to extract small waterbodies from Zhuhai-1 satellite hyperspectral remote sensing image. To the best of our knowledge, this is the first time that U-Net framework has been used for small waterbody extraction from satellite hyperspectral image. Specifically, we increase the depth of the network, and because there are far more negative samples (non-waterbodies) in remote sensing data than positive samples (waterbodies), Intersection over Union (IoU) is used as an evaluation indicator during model training. The results show that this method can accurately extract small waterbodies in the complex scenes. Compared with the traditional methods of support vector machine and the normalized waterbody index, the accuracy of this method is significantly higher, and both the Recall and the Precision are close to 90%.</description><subject>Artificial neural networks</subject><subject>Data mining</subject><subject>Data models</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral remote sensing</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>Rivers</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>small waterbody</subject><subject>Support vector machines</subject><subject>Training</subject><subject>U-Net</subject><subject>Water resources</subject><subject>Water use</subject><subject>Zhuhai-1</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-AOOliefFttvS9mgIAgnRBCQYL013dxaW7Ae2xci_d1eIp5nD874zeRC6p2RAKdFP88liOWCEkUFMuNRUXaAeFUJFREh62e1cREKrj2t04_2OEMaVkj1kl5UtS7y2AVzSZEc8_gnOpqFoarwuwhbPqr1rviHDq-gVAl75ot7gz-1ha4uI4ulxD87vIW1DJV5A1QTAS6j_qFllN-Bv0VVuSw9359lHq5fx-2gazd8ms9HzPEqZjkMkLVNprijnTAumSByrxIphziijoChNWJLxVIIGkgkJXGtFhpLnXJJMARNxHz2eett_vw7gg9k1B1e3Jw0btioo01y2FD1RqWu8d5CbvSsq646GEtOZNJ1J05k0Z5Nt5uGUKQDgn9cxE4TK-Be4325Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Qin, Peng</creator><creator>Cai, Yulin</creator><creator>Wang, Xueli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7405-1113</orcidid><orcidid>https://orcid.org/0000-0002-5291-6518</orcidid></search><sort><creationdate>2022</creationdate><title>Small Waterbody Extraction With Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images</title><author>Qin, Peng ; Cai, Yulin ; Wang, Xueli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7a28cf8144295280338ba56f2121e811b2bd4c7e9e0d57e49980674f470d8e253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Data mining</topic><topic>Data models</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral remote sensing</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>Rivers</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>small waterbody</topic><topic>Support vector machines</topic><topic>Training</topic><topic>U-Net</topic><topic>Water resources</topic><topic>Water use</topic><topic>Zhuhai-1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Peng</creatorcontrib><creatorcontrib>Cai, Yulin</creatorcontrib><creatorcontrib>Wang, Xueli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin, Peng</au><au>Cai, Yulin</au><au>Wang, Xueli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Waterbody Extraction With Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Water extraction is an important prerequisite for the protection and rational use of water resources. The existing waterbody extraction methods are mostly used for the extraction of large- and medium-sized waterbodies, whereas less attention has been paid to small waterbodies. In this letter, we adapt the U-Net convolutional neural network to extract small waterbodies from Zhuhai-1 satellite hyperspectral remote sensing image. To the best of our knowledge, this is the first time that U-Net framework has been used for small waterbody extraction from satellite hyperspectral image. Specifically, we increase the depth of the network, and because there are far more negative samples (non-waterbodies) in remote sensing data than positive samples (waterbodies), Intersection over Union (IoU) is used as an evaluation indicator during model training. The results show that this method can accurately extract small waterbodies in the complex scenes. Compared with the traditional methods of support vector machine and the normalized waterbody index, the accuracy of this method is significantly higher, and both the Recall and the Precision are close to 90%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2020.3047918</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7405-1113</orcidid><orcidid>https://orcid.org/0000-0002-5291-6518</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_9325017 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Data mining Data models Hyperspectral imaging Hyperspectral remote sensing Methods Neural networks Remote sensing Rivers Satellite imagery Satellites small waterbody Support vector machines Training U-Net Water resources Water use Zhuhai-1 |
title | Small Waterbody Extraction With Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Waterbody%20Extraction%20With%20Improved%20U-Net%20Using%20Zhuhai-1%20Hyperspectral%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Qin,%20Peng&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2020.3047918&rft_dat=%3Cproquest_RIE%3E2615512947%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615512947&rft_id=info:pmid/&rft_ieee_id=9325017&rfr_iscdi=true |