Small Waterbody Extraction With Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images

Water extraction is an important prerequisite for the protection and rational use of water resources. The existing waterbody extraction methods are mostly used for the extraction of large- and medium-sized waterbodies, whereas less attention has been paid to small waterbodies. In this letter, we ada...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Qin, Peng, Cai, Yulin, Wang, Xueli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Qin, Peng
Cai, Yulin
Wang, Xueli
description Water extraction is an important prerequisite for the protection and rational use of water resources. The existing waterbody extraction methods are mostly used for the extraction of large- and medium-sized waterbodies, whereas less attention has been paid to small waterbodies. In this letter, we adapt the U-Net convolutional neural network to extract small waterbodies from Zhuhai-1 satellite hyperspectral remote sensing image. To the best of our knowledge, this is the first time that U-Net framework has been used for small waterbody extraction from satellite hyperspectral image. Specifically, we increase the depth of the network, and because there are far more negative samples (non-waterbodies) in remote sensing data than positive samples (waterbodies), Intersection over Union (IoU) is used as an evaluation indicator during model training. The results show that this method can accurately extract small waterbodies in the complex scenes. Compared with the traditional methods of support vector machine and the normalized waterbody index, the accuracy of this method is significantly higher, and both the Recall and the Precision are close to 90%.
doi_str_mv 10.1109/LGRS.2020.3047918
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9325017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9325017</ieee_id><sourcerecordid>2615512947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7a28cf8144295280338ba56f2121e811b2bd4c7e9e0d57e49980674f470d8e253</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-AOOliefFttvS9mgIAgnRBCQYL013dxaW7Ae2xci_d1eIp5nD874zeRC6p2RAKdFP88liOWCEkUFMuNRUXaAeFUJFREh62e1cREKrj2t04_2OEMaVkj1kl5UtS7y2AVzSZEc8_gnOpqFoarwuwhbPqr1rviHDq-gVAl75ot7gz-1ha4uI4ulxD87vIW1DJV5A1QTAS6j_qFllN-Bv0VVuSw9359lHq5fx-2gazd8ms9HzPEqZjkMkLVNprijnTAumSByrxIphziijoChNWJLxVIIGkgkJXGtFhpLnXJJMARNxHz2eett_vw7gg9k1B1e3Jw0btioo01y2FD1RqWu8d5CbvSsq646GEtOZNJ1J05k0Z5Nt5uGUKQDgn9cxE4TK-Be4325Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615512947</pqid></control><display><type>article</type><title>Small Waterbody Extraction With Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>Qin, Peng ; Cai, Yulin ; Wang, Xueli</creator><creatorcontrib>Qin, Peng ; Cai, Yulin ; Wang, Xueli</creatorcontrib><description>Water extraction is an important prerequisite for the protection and rational use of water resources. The existing waterbody extraction methods are mostly used for the extraction of large- and medium-sized waterbodies, whereas less attention has been paid to small waterbodies. In this letter, we adapt the U-Net convolutional neural network to extract small waterbodies from Zhuhai-1 satellite hyperspectral remote sensing image. To the best of our knowledge, this is the first time that U-Net framework has been used for small waterbody extraction from satellite hyperspectral image. Specifically, we increase the depth of the network, and because there are far more negative samples (non-waterbodies) in remote sensing data than positive samples (waterbodies), Intersection over Union (IoU) is used as an evaluation indicator during model training. The results show that this method can accurately extract small waterbodies in the complex scenes. Compared with the traditional methods of support vector machine and the normalized waterbody index, the accuracy of this method is significantly higher, and both the Recall and the Precision are close to 90%.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2020.3047918</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Data mining ; Data models ; Hyperspectral imaging ; Hyperspectral remote sensing ; Methods ; Neural networks ; Remote sensing ; Rivers ; Satellite imagery ; Satellites ; small waterbody ; Support vector machines ; Training ; U-Net ; Water resources ; Water use ; Zhuhai-1</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7a28cf8144295280338ba56f2121e811b2bd4c7e9e0d57e49980674f470d8e253</citedby><cites>FETCH-LOGICAL-c293t-7a28cf8144295280338ba56f2121e811b2bd4c7e9e0d57e49980674f470d8e253</cites><orcidid>0000-0002-7405-1113 ; 0000-0002-5291-6518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9325017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4021,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9325017$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qin, Peng</creatorcontrib><creatorcontrib>Cai, Yulin</creatorcontrib><creatorcontrib>Wang, Xueli</creatorcontrib><title>Small Waterbody Extraction With Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Water extraction is an important prerequisite for the protection and rational use of water resources. The existing waterbody extraction methods are mostly used for the extraction of large- and medium-sized waterbodies, whereas less attention has been paid to small waterbodies. In this letter, we adapt the U-Net convolutional neural network to extract small waterbodies from Zhuhai-1 satellite hyperspectral remote sensing image. To the best of our knowledge, this is the first time that U-Net framework has been used for small waterbody extraction from satellite hyperspectral image. Specifically, we increase the depth of the network, and because there are far more negative samples (non-waterbodies) in remote sensing data than positive samples (waterbodies), Intersection over Union (IoU) is used as an evaluation indicator during model training. The results show that this method can accurately extract small waterbodies in the complex scenes. Compared with the traditional methods of support vector machine and the normalized waterbody index, the accuracy of this method is significantly higher, and both the Recall and the Precision are close to 90%.</description><subject>Artificial neural networks</subject><subject>Data mining</subject><subject>Data models</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral remote sensing</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>Rivers</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>small waterbody</subject><subject>Support vector machines</subject><subject>Training</subject><subject>U-Net</subject><subject>Water resources</subject><subject>Water use</subject><subject>Zhuhai-1</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-AOOliefFttvS9mgIAgnRBCQYL013dxaW7Ae2xci_d1eIp5nD874zeRC6p2RAKdFP88liOWCEkUFMuNRUXaAeFUJFREh62e1cREKrj2t04_2OEMaVkj1kl5UtS7y2AVzSZEc8_gnOpqFoarwuwhbPqr1rviHDq-gVAl75ot7gz-1ha4uI4ulxD87vIW1DJV5A1QTAS6j_qFllN-Bv0VVuSw9359lHq5fx-2gazd8ms9HzPEqZjkMkLVNprijnTAumSByrxIphziijoChNWJLxVIIGkgkJXGtFhpLnXJJMARNxHz2eett_vw7gg9k1B1e3Jw0btioo01y2FD1RqWu8d5CbvSsq646GEtOZNJ1J05k0Z5Nt5uGUKQDgn9cxE4TK-Be4325Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Qin, Peng</creator><creator>Cai, Yulin</creator><creator>Wang, Xueli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7405-1113</orcidid><orcidid>https://orcid.org/0000-0002-5291-6518</orcidid></search><sort><creationdate>2022</creationdate><title>Small Waterbody Extraction With Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images</title><author>Qin, Peng ; Cai, Yulin ; Wang, Xueli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7a28cf8144295280338ba56f2121e811b2bd4c7e9e0d57e49980674f470d8e253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Data mining</topic><topic>Data models</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral remote sensing</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>Rivers</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>small waterbody</topic><topic>Support vector machines</topic><topic>Training</topic><topic>U-Net</topic><topic>Water resources</topic><topic>Water use</topic><topic>Zhuhai-1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Peng</creatorcontrib><creatorcontrib>Cai, Yulin</creatorcontrib><creatorcontrib>Wang, Xueli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin, Peng</au><au>Cai, Yulin</au><au>Wang, Xueli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Waterbody Extraction With Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Water extraction is an important prerequisite for the protection and rational use of water resources. The existing waterbody extraction methods are mostly used for the extraction of large- and medium-sized waterbodies, whereas less attention has been paid to small waterbodies. In this letter, we adapt the U-Net convolutional neural network to extract small waterbodies from Zhuhai-1 satellite hyperspectral remote sensing image. To the best of our knowledge, this is the first time that U-Net framework has been used for small waterbody extraction from satellite hyperspectral image. Specifically, we increase the depth of the network, and because there are far more negative samples (non-waterbodies) in remote sensing data than positive samples (waterbodies), Intersection over Union (IoU) is used as an evaluation indicator during model training. The results show that this method can accurately extract small waterbodies in the complex scenes. Compared with the traditional methods of support vector machine and the normalized waterbody index, the accuracy of this method is significantly higher, and both the Recall and the Precision are close to 90%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2020.3047918</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7405-1113</orcidid><orcidid>https://orcid.org/0000-0002-5291-6518</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_9325017
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Data mining
Data models
Hyperspectral imaging
Hyperspectral remote sensing
Methods
Neural networks
Remote sensing
Rivers
Satellite imagery
Satellites
small waterbody
Support vector machines
Training
U-Net
Water resources
Water use
Zhuhai-1
title Small Waterbody Extraction With Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Waterbody%20Extraction%20With%20Improved%20U-Net%20Using%20Zhuhai-1%20Hyperspectral%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Qin,%20Peng&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2020.3047918&rft_dat=%3Cproquest_RIE%3E2615512947%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615512947&rft_id=info:pmid/&rft_ieee_id=9325017&rfr_iscdi=true