Transformation-Aware Embeddings for Image Provenance
A dramatic rise in the flow of manipulated image content on the Internet has led to a prompt response from the media forensics research community. New mitigation efforts leverage cutting-edge data-driven strategies and increasingly incorporate usage of techniques from computer vision and machine lea...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2021, Vol.16, p.2493-2507 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2507 |
---|---|
container_issue | |
container_start_page | 2493 |
container_title | IEEE transactions on information forensics and security |
container_volume | 16 |
creator | Bharati, Aparna Moreira, Daniel Flynn, Patrick J. de Rezende Rocha, Anderson Bowyer, Kevin W. Scheirer, Walter J. |
description | A dramatic rise in the flow of manipulated image content on the Internet has led to a prompt response from the media forensics research community. New mitigation efforts leverage cutting-edge data-driven strategies and increasingly incorporate usage of techniques from computer vision and machine learning to detect and profile the space of image manipulations. This paper addresses Image Provenance Analysis, which aims at discovering relationships among different manipulated image versions that share content. One important task in provenance analysis, like most visual understanding problems, is establishing a visual description and dissimilarity computation method that connects images that share full or partial content. But the existing handcrafted or learned descriptors - generally appropriate for tasks such as object recognition - may not sufficiently encode the subtle differences between near-duplicate image variants, which significantly characterize the provenance of any image. This paper introduces a novel data-driven learning-based approach that provides the context for ordering images that have been generated from a single image source through various transformations. Our approach learns transformation-aware embeddings using weak supervision via composited transformations and a rank-based Edit Sequence Loss. To establish the effectiveness of the proposed approach, comparisons are made with state-of-the-art handcrafted and deep-learning-based descriptors, as well as image matching approaches. Further experimentation validates the proposed approach in the context of image provenance analysis and improves upon existing approaches. |
doi_str_mv | 10.1109/TIFS.2021.3050061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9316916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9316916</ieee_id><sourcerecordid>2492860267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-9709e5e5d73daaa6c77f46c3907268dc9969ac214e83c653d716d04ddacb15073</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFY_gHgJeE7d2b_ZYyltLRQUrOdluzspKSapu63itzchpacZZt6bx_wIeQQ6AaDmZbNafEwYZTDhVFKq4IqMQEqVq252femB35K7lPaUCgGqGBGxia5JZRtrd6zaJp_-uojZvN5iCFWzS1m3yla122H2HtsfbFzj8Z7clO4r4cO5jsnnYr6Zvebrt-VqNl3nngl5zI2mBiXKoHlwzimvdSmU54ZqporgjVHGeQYCC-6V5EGDClSE4PwWJNV8TJ6Hu4fYfp8wHe2-PcWmi7RMGFZ0v6leBYPKxzaliKU9xKp28c8CtT0c28OxPRx7htN5ngZPhYgXveGgDCj-D-aTXtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492860267</pqid></control><display><type>article</type><title>Transformation-Aware Embeddings for Image Provenance</title><source>IEEE Electronic Library (IEL)</source><creator>Bharati, Aparna ; Moreira, Daniel ; Flynn, Patrick J. ; de Rezende Rocha, Anderson ; Bowyer, Kevin W. ; Scheirer, Walter J.</creator><creatorcontrib>Bharati, Aparna ; Moreira, Daniel ; Flynn, Patrick J. ; de Rezende Rocha, Anderson ; Bowyer, Kevin W. ; Scheirer, Walter J.</creatorcontrib><description>A dramatic rise in the flow of manipulated image content on the Internet has led to a prompt response from the media forensics research community. New mitigation efforts leverage cutting-edge data-driven strategies and increasingly incorporate usage of techniques from computer vision and machine learning to detect and profile the space of image manipulations. This paper addresses Image Provenance Analysis, which aims at discovering relationships among different manipulated image versions that share content. One important task in provenance analysis, like most visual understanding problems, is establishing a visual description and dissimilarity computation method that connects images that share full or partial content. But the existing handcrafted or learned descriptors - generally appropriate for tasks such as object recognition - may not sufficiently encode the subtle differences between near-duplicate image variants, which significantly characterize the provenance of any image. This paper introduces a novel data-driven learning-based approach that provides the context for ordering images that have been generated from a single image source through various transformations. Our approach learns transformation-aware embeddings using weak supervision via composited transformations and a rank-based Edit Sequence Loss. To establish the effectiveness of the proposed approach, comparisons are made with state-of-the-art handcrafted and deep-learning-based descriptors, as well as image matching approaches. Further experimentation validates the proposed approach in the context of image provenance analysis and improves upon existing approaches.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2021.3050061</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer vision ; Context ; deep learning ; edit sequence loss ; Experimentation ; Forensics ; Image coding ; Image manipulation ; Image matching ; Image provenance analysis ; Image retrieval ; Machine learning ; Media ; Object recognition ; Task analysis ; Transformations ; Visualization</subject><ispartof>IEEE transactions on information forensics and security, 2021, Vol.16, p.2493-2507</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-9709e5e5d73daaa6c77f46c3907268dc9969ac214e83c653d716d04ddacb15073</cites><orcidid>0000-0001-9757-5756 ; 0000-0002-7562-4390 ; 0000-0001-9649-8074 ; 0000-0002-6404-9466 ; 0000-0002-5446-114X ; 0000-0002-4236-8212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9316916$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9316916$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bharati, Aparna</creatorcontrib><creatorcontrib>Moreira, Daniel</creatorcontrib><creatorcontrib>Flynn, Patrick J.</creatorcontrib><creatorcontrib>de Rezende Rocha, Anderson</creatorcontrib><creatorcontrib>Bowyer, Kevin W.</creatorcontrib><creatorcontrib>Scheirer, Walter J.</creatorcontrib><title>Transformation-Aware Embeddings for Image Provenance</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>A dramatic rise in the flow of manipulated image content on the Internet has led to a prompt response from the media forensics research community. New mitigation efforts leverage cutting-edge data-driven strategies and increasingly incorporate usage of techniques from computer vision and machine learning to detect and profile the space of image manipulations. This paper addresses Image Provenance Analysis, which aims at discovering relationships among different manipulated image versions that share content. One important task in provenance analysis, like most visual understanding problems, is establishing a visual description and dissimilarity computation method that connects images that share full or partial content. But the existing handcrafted or learned descriptors - generally appropriate for tasks such as object recognition - may not sufficiently encode the subtle differences between near-duplicate image variants, which significantly characterize the provenance of any image. This paper introduces a novel data-driven learning-based approach that provides the context for ordering images that have been generated from a single image source through various transformations. Our approach learns transformation-aware embeddings using weak supervision via composited transformations and a rank-based Edit Sequence Loss. To establish the effectiveness of the proposed approach, comparisons are made with state-of-the-art handcrafted and deep-learning-based descriptors, as well as image matching approaches. Further experimentation validates the proposed approach in the context of image provenance analysis and improves upon existing approaches.</description><subject>Computer vision</subject><subject>Context</subject><subject>deep learning</subject><subject>edit sequence loss</subject><subject>Experimentation</subject><subject>Forensics</subject><subject>Image coding</subject><subject>Image manipulation</subject><subject>Image matching</subject><subject>Image provenance analysis</subject><subject>Image retrieval</subject><subject>Machine learning</subject><subject>Media</subject><subject>Object recognition</subject><subject>Task analysis</subject><subject>Transformations</subject><subject>Visualization</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxRdRsFY_gHgJeE7d2b_ZYyltLRQUrOdluzspKSapu63itzchpacZZt6bx_wIeQQ6AaDmZbNafEwYZTDhVFKq4IqMQEqVq252femB35K7lPaUCgGqGBGxia5JZRtrd6zaJp_-uojZvN5iCFWzS1m3yla122H2HtsfbFzj8Z7clO4r4cO5jsnnYr6Zvebrt-VqNl3nngl5zI2mBiXKoHlwzimvdSmU54ZqporgjVHGeQYCC-6V5EGDClSE4PwWJNV8TJ6Hu4fYfp8wHe2-PcWmi7RMGFZ0v6leBYPKxzaliKU9xKp28c8CtT0c28OxPRx7htN5ngZPhYgXveGgDCj-D-aTXtw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Bharati, Aparna</creator><creator>Moreira, Daniel</creator><creator>Flynn, Patrick J.</creator><creator>de Rezende Rocha, Anderson</creator><creator>Bowyer, Kevin W.</creator><creator>Scheirer, Walter J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9757-5756</orcidid><orcidid>https://orcid.org/0000-0002-7562-4390</orcidid><orcidid>https://orcid.org/0000-0001-9649-8074</orcidid><orcidid>https://orcid.org/0000-0002-6404-9466</orcidid><orcidid>https://orcid.org/0000-0002-5446-114X</orcidid><orcidid>https://orcid.org/0000-0002-4236-8212</orcidid></search><sort><creationdate>2021</creationdate><title>Transformation-Aware Embeddings for Image Provenance</title><author>Bharati, Aparna ; Moreira, Daniel ; Flynn, Patrick J. ; de Rezende Rocha, Anderson ; Bowyer, Kevin W. ; Scheirer, Walter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-9709e5e5d73daaa6c77f46c3907268dc9969ac214e83c653d716d04ddacb15073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer vision</topic><topic>Context</topic><topic>deep learning</topic><topic>edit sequence loss</topic><topic>Experimentation</topic><topic>Forensics</topic><topic>Image coding</topic><topic>Image manipulation</topic><topic>Image matching</topic><topic>Image provenance analysis</topic><topic>Image retrieval</topic><topic>Machine learning</topic><topic>Media</topic><topic>Object recognition</topic><topic>Task analysis</topic><topic>Transformations</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bharati, Aparna</creatorcontrib><creatorcontrib>Moreira, Daniel</creatorcontrib><creatorcontrib>Flynn, Patrick J.</creatorcontrib><creatorcontrib>de Rezende Rocha, Anderson</creatorcontrib><creatorcontrib>Bowyer, Kevin W.</creatorcontrib><creatorcontrib>Scheirer, Walter J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bharati, Aparna</au><au>Moreira, Daniel</au><au>Flynn, Patrick J.</au><au>de Rezende Rocha, Anderson</au><au>Bowyer, Kevin W.</au><au>Scheirer, Walter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformation-Aware Embeddings for Image Provenance</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2021</date><risdate>2021</risdate><volume>16</volume><spage>2493</spage><epage>2507</epage><pages>2493-2507</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>A dramatic rise in the flow of manipulated image content on the Internet has led to a prompt response from the media forensics research community. New mitigation efforts leverage cutting-edge data-driven strategies and increasingly incorporate usage of techniques from computer vision and machine learning to detect and profile the space of image manipulations. This paper addresses Image Provenance Analysis, which aims at discovering relationships among different manipulated image versions that share content. One important task in provenance analysis, like most visual understanding problems, is establishing a visual description and dissimilarity computation method that connects images that share full or partial content. But the existing handcrafted or learned descriptors - generally appropriate for tasks such as object recognition - may not sufficiently encode the subtle differences between near-duplicate image variants, which significantly characterize the provenance of any image. This paper introduces a novel data-driven learning-based approach that provides the context for ordering images that have been generated from a single image source through various transformations. Our approach learns transformation-aware embeddings using weak supervision via composited transformations and a rank-based Edit Sequence Loss. To establish the effectiveness of the proposed approach, comparisons are made with state-of-the-art handcrafted and deep-learning-based descriptors, as well as image matching approaches. Further experimentation validates the proposed approach in the context of image provenance analysis and improves upon existing approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2021.3050061</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9757-5756</orcidid><orcidid>https://orcid.org/0000-0002-7562-4390</orcidid><orcidid>https://orcid.org/0000-0001-9649-8074</orcidid><orcidid>https://orcid.org/0000-0002-6404-9466</orcidid><orcidid>https://orcid.org/0000-0002-5446-114X</orcidid><orcidid>https://orcid.org/0000-0002-4236-8212</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2021, Vol.16, p.2493-2507 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_ieee_primary_9316916 |
source | IEEE Electronic Library (IEL) |
subjects | Computer vision Context deep learning edit sequence loss Experimentation Forensics Image coding Image manipulation Image matching Image provenance analysis Image retrieval Machine learning Media Object recognition Task analysis Transformations Visualization |
title | Transformation-Aware Embeddings for Image Provenance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformation-Aware%20Embeddings%20for%20Image%20Provenance&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Bharati,%20Aparna&rft.date=2021&rft.volume=16&rft.spage=2493&rft.epage=2507&rft.pages=2493-2507&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2021.3050061&rft_dat=%3Cproquest_RIE%3E2492860267%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492860267&rft_id=info:pmid/&rft_ieee_id=9316916&rfr_iscdi=true |