Transformation-Aware Embeddings for Image Provenance

A dramatic rise in the flow of manipulated image content on the Internet has led to a prompt response from the media forensics research community. New mitigation efforts leverage cutting-edge data-driven strategies and increasingly incorporate usage of techniques from computer vision and machine lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2021, Vol.16, p.2493-2507
Hauptverfasser: Bharati, Aparna, Moreira, Daniel, Flynn, Patrick J., de Rezende Rocha, Anderson, Bowyer, Kevin W., Scheirer, Walter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2507
container_issue
container_start_page 2493
container_title IEEE transactions on information forensics and security
container_volume 16
creator Bharati, Aparna
Moreira, Daniel
Flynn, Patrick J.
de Rezende Rocha, Anderson
Bowyer, Kevin W.
Scheirer, Walter J.
description A dramatic rise in the flow of manipulated image content on the Internet has led to a prompt response from the media forensics research community. New mitigation efforts leverage cutting-edge data-driven strategies and increasingly incorporate usage of techniques from computer vision and machine learning to detect and profile the space of image manipulations. This paper addresses Image Provenance Analysis, which aims at discovering relationships among different manipulated image versions that share content. One important task in provenance analysis, like most visual understanding problems, is establishing a visual description and dissimilarity computation method that connects images that share full or partial content. But the existing handcrafted or learned descriptors - generally appropriate for tasks such as object recognition - may not sufficiently encode the subtle differences between near-duplicate image variants, which significantly characterize the provenance of any image. This paper introduces a novel data-driven learning-based approach that provides the context for ordering images that have been generated from a single image source through various transformations. Our approach learns transformation-aware embeddings using weak supervision via composited transformations and a rank-based Edit Sequence Loss. To establish the effectiveness of the proposed approach, comparisons are made with state-of-the-art handcrafted and deep-learning-based descriptors, as well as image matching approaches. Further experimentation validates the proposed approach in the context of image provenance analysis and improves upon existing approaches.
doi_str_mv 10.1109/TIFS.2021.3050061
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9316916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9316916</ieee_id><sourcerecordid>2492860267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-9709e5e5d73daaa6c77f46c3907268dc9969ac214e83c653d716d04ddacb15073</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFY_gHgJeE7d2b_ZYyltLRQUrOdluzspKSapu63itzchpacZZt6bx_wIeQQ6AaDmZbNafEwYZTDhVFKq4IqMQEqVq252femB35K7lPaUCgGqGBGxia5JZRtrd6zaJp_-uojZvN5iCFWzS1m3yla122H2HtsfbFzj8Z7clO4r4cO5jsnnYr6Zvebrt-VqNl3nngl5zI2mBiXKoHlwzimvdSmU54ZqporgjVHGeQYCC-6V5EGDClSE4PwWJNV8TJ6Hu4fYfp8wHe2-PcWmi7RMGFZ0v6leBYPKxzaliKU9xKp28c8CtT0c28OxPRx7htN5ngZPhYgXveGgDCj-D-aTXtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492860267</pqid></control><display><type>article</type><title>Transformation-Aware Embeddings for Image Provenance</title><source>IEEE Electronic Library (IEL)</source><creator>Bharati, Aparna ; Moreira, Daniel ; Flynn, Patrick J. ; de Rezende Rocha, Anderson ; Bowyer, Kevin W. ; Scheirer, Walter J.</creator><creatorcontrib>Bharati, Aparna ; Moreira, Daniel ; Flynn, Patrick J. ; de Rezende Rocha, Anderson ; Bowyer, Kevin W. ; Scheirer, Walter J.</creatorcontrib><description>A dramatic rise in the flow of manipulated image content on the Internet has led to a prompt response from the media forensics research community. New mitigation efforts leverage cutting-edge data-driven strategies and increasingly incorporate usage of techniques from computer vision and machine learning to detect and profile the space of image manipulations. This paper addresses Image Provenance Analysis, which aims at discovering relationships among different manipulated image versions that share content. One important task in provenance analysis, like most visual understanding problems, is establishing a visual description and dissimilarity computation method that connects images that share full or partial content. But the existing handcrafted or learned descriptors - generally appropriate for tasks such as object recognition - may not sufficiently encode the subtle differences between near-duplicate image variants, which significantly characterize the provenance of any image. This paper introduces a novel data-driven learning-based approach that provides the context for ordering images that have been generated from a single image source through various transformations. Our approach learns transformation-aware embeddings using weak supervision via composited transformations and a rank-based Edit Sequence Loss. To establish the effectiveness of the proposed approach, comparisons are made with state-of-the-art handcrafted and deep-learning-based descriptors, as well as image matching approaches. Further experimentation validates the proposed approach in the context of image provenance analysis and improves upon existing approaches.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2021.3050061</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer vision ; Context ; deep learning ; edit sequence loss ; Experimentation ; Forensics ; Image coding ; Image manipulation ; Image matching ; Image provenance analysis ; Image retrieval ; Machine learning ; Media ; Object recognition ; Task analysis ; Transformations ; Visualization</subject><ispartof>IEEE transactions on information forensics and security, 2021, Vol.16, p.2493-2507</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-9709e5e5d73daaa6c77f46c3907268dc9969ac214e83c653d716d04ddacb15073</cites><orcidid>0000-0001-9757-5756 ; 0000-0002-7562-4390 ; 0000-0001-9649-8074 ; 0000-0002-6404-9466 ; 0000-0002-5446-114X ; 0000-0002-4236-8212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9316916$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9316916$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bharati, Aparna</creatorcontrib><creatorcontrib>Moreira, Daniel</creatorcontrib><creatorcontrib>Flynn, Patrick J.</creatorcontrib><creatorcontrib>de Rezende Rocha, Anderson</creatorcontrib><creatorcontrib>Bowyer, Kevin W.</creatorcontrib><creatorcontrib>Scheirer, Walter J.</creatorcontrib><title>Transformation-Aware Embeddings for Image Provenance</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>A dramatic rise in the flow of manipulated image content on the Internet has led to a prompt response from the media forensics research community. New mitigation efforts leverage cutting-edge data-driven strategies and increasingly incorporate usage of techniques from computer vision and machine learning to detect and profile the space of image manipulations. This paper addresses Image Provenance Analysis, which aims at discovering relationships among different manipulated image versions that share content. One important task in provenance analysis, like most visual understanding problems, is establishing a visual description and dissimilarity computation method that connects images that share full or partial content. But the existing handcrafted or learned descriptors - generally appropriate for tasks such as object recognition - may not sufficiently encode the subtle differences between near-duplicate image variants, which significantly characterize the provenance of any image. This paper introduces a novel data-driven learning-based approach that provides the context for ordering images that have been generated from a single image source through various transformations. Our approach learns transformation-aware embeddings using weak supervision via composited transformations and a rank-based Edit Sequence Loss. To establish the effectiveness of the proposed approach, comparisons are made with state-of-the-art handcrafted and deep-learning-based descriptors, as well as image matching approaches. Further experimentation validates the proposed approach in the context of image provenance analysis and improves upon existing approaches.</description><subject>Computer vision</subject><subject>Context</subject><subject>deep learning</subject><subject>edit sequence loss</subject><subject>Experimentation</subject><subject>Forensics</subject><subject>Image coding</subject><subject>Image manipulation</subject><subject>Image matching</subject><subject>Image provenance analysis</subject><subject>Image retrieval</subject><subject>Machine learning</subject><subject>Media</subject><subject>Object recognition</subject><subject>Task analysis</subject><subject>Transformations</subject><subject>Visualization</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxRdRsFY_gHgJeE7d2b_ZYyltLRQUrOdluzspKSapu63itzchpacZZt6bx_wIeQQ6AaDmZbNafEwYZTDhVFKq4IqMQEqVq252femB35K7lPaUCgGqGBGxia5JZRtrd6zaJp_-uojZvN5iCFWzS1m3yla122H2HtsfbFzj8Z7clO4r4cO5jsnnYr6Zvebrt-VqNl3nngl5zI2mBiXKoHlwzimvdSmU54ZqporgjVHGeQYCC-6V5EGDClSE4PwWJNV8TJ6Hu4fYfp8wHe2-PcWmi7RMGFZ0v6leBYPKxzaliKU9xKp28c8CtT0c28OxPRx7htN5ngZPhYgXveGgDCj-D-aTXtw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Bharati, Aparna</creator><creator>Moreira, Daniel</creator><creator>Flynn, Patrick J.</creator><creator>de Rezende Rocha, Anderson</creator><creator>Bowyer, Kevin W.</creator><creator>Scheirer, Walter J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9757-5756</orcidid><orcidid>https://orcid.org/0000-0002-7562-4390</orcidid><orcidid>https://orcid.org/0000-0001-9649-8074</orcidid><orcidid>https://orcid.org/0000-0002-6404-9466</orcidid><orcidid>https://orcid.org/0000-0002-5446-114X</orcidid><orcidid>https://orcid.org/0000-0002-4236-8212</orcidid></search><sort><creationdate>2021</creationdate><title>Transformation-Aware Embeddings for Image Provenance</title><author>Bharati, Aparna ; Moreira, Daniel ; Flynn, Patrick J. ; de Rezende Rocha, Anderson ; Bowyer, Kevin W. ; Scheirer, Walter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-9709e5e5d73daaa6c77f46c3907268dc9969ac214e83c653d716d04ddacb15073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer vision</topic><topic>Context</topic><topic>deep learning</topic><topic>edit sequence loss</topic><topic>Experimentation</topic><topic>Forensics</topic><topic>Image coding</topic><topic>Image manipulation</topic><topic>Image matching</topic><topic>Image provenance analysis</topic><topic>Image retrieval</topic><topic>Machine learning</topic><topic>Media</topic><topic>Object recognition</topic><topic>Task analysis</topic><topic>Transformations</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bharati, Aparna</creatorcontrib><creatorcontrib>Moreira, Daniel</creatorcontrib><creatorcontrib>Flynn, Patrick J.</creatorcontrib><creatorcontrib>de Rezende Rocha, Anderson</creatorcontrib><creatorcontrib>Bowyer, Kevin W.</creatorcontrib><creatorcontrib>Scheirer, Walter J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bharati, Aparna</au><au>Moreira, Daniel</au><au>Flynn, Patrick J.</au><au>de Rezende Rocha, Anderson</au><au>Bowyer, Kevin W.</au><au>Scheirer, Walter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformation-Aware Embeddings for Image Provenance</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2021</date><risdate>2021</risdate><volume>16</volume><spage>2493</spage><epage>2507</epage><pages>2493-2507</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>A dramatic rise in the flow of manipulated image content on the Internet has led to a prompt response from the media forensics research community. New mitigation efforts leverage cutting-edge data-driven strategies and increasingly incorporate usage of techniques from computer vision and machine learning to detect and profile the space of image manipulations. This paper addresses Image Provenance Analysis, which aims at discovering relationships among different manipulated image versions that share content. One important task in provenance analysis, like most visual understanding problems, is establishing a visual description and dissimilarity computation method that connects images that share full or partial content. But the existing handcrafted or learned descriptors - generally appropriate for tasks such as object recognition - may not sufficiently encode the subtle differences between near-duplicate image variants, which significantly characterize the provenance of any image. This paper introduces a novel data-driven learning-based approach that provides the context for ordering images that have been generated from a single image source through various transformations. Our approach learns transformation-aware embeddings using weak supervision via composited transformations and a rank-based Edit Sequence Loss. To establish the effectiveness of the proposed approach, comparisons are made with state-of-the-art handcrafted and deep-learning-based descriptors, as well as image matching approaches. Further experimentation validates the proposed approach in the context of image provenance analysis and improves upon existing approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2021.3050061</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9757-5756</orcidid><orcidid>https://orcid.org/0000-0002-7562-4390</orcidid><orcidid>https://orcid.org/0000-0001-9649-8074</orcidid><orcidid>https://orcid.org/0000-0002-6404-9466</orcidid><orcidid>https://orcid.org/0000-0002-5446-114X</orcidid><orcidid>https://orcid.org/0000-0002-4236-8212</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2021, Vol.16, p.2493-2507
issn 1556-6013
1556-6021
language eng
recordid cdi_ieee_primary_9316916
source IEEE Electronic Library (IEL)
subjects Computer vision
Context
deep learning
edit sequence loss
Experimentation
Forensics
Image coding
Image manipulation
Image matching
Image provenance analysis
Image retrieval
Machine learning
Media
Object recognition
Task analysis
Transformations
Visualization
title Transformation-Aware Embeddings for Image Provenance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformation-Aware%20Embeddings%20for%20Image%20Provenance&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Bharati,%20Aparna&rft.date=2021&rft.volume=16&rft.spage=2493&rft.epage=2507&rft.pages=2493-2507&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2021.3050061&rft_dat=%3Cproquest_RIE%3E2492860267%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492860267&rft_id=info:pmid/&rft_ieee_id=9316916&rfr_iscdi=true