AKM3C: Adaptive K-Multiple-Means for Multi-View Clustering
With the popularity of cameras and sensors, massive data are captured from various view angles or modalities, which provide abundant complementary information and also bring great challenges for traditional clustering methods. In this article, we propose a novel Adaptive K-Multiple-Means for multi-v...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2021-11, Vol.31 (11), p.4214-4226 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4226 |
---|---|
container_issue | 11 |
container_start_page | 4214 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 31 |
creator | Hu, Yongli Song, Zuolong Wang, Boyue Gao, Junbin Sun, Yanfeng Yin, Baocai |
description | With the popularity of cameras and sensors, massive data are captured from various view angles or modalities, which provide abundant complementary information and also bring great challenges for traditional clustering methods. In this article, we propose a novel Adaptive K-Multiple-Means for multi-view clustering method (AKM 3 C). Unlike traditional multi-view K-means methods by grouping samples into C clusters each with a cluster center in every view, the proposed AKM 3 C employs M (M>C) sub-cluster centers in each view to reveal the sub-cluster structure in the multi-view data thus enhances the clustering performance. Additionally, to distinguish the importance of different views, instead of using empirical weights, AKM 3 C exploits the multi-view combination weights strategy to assign a weight to each view automatically and thus fuses the complementary information of different views properly to get an optimally shared bipartite graph, on which the Laplacian rank constraint is executed and the final clusters are obtained by directly partitioning. An efficient optimization algorithm proposed with complexity and convergence analysis is used to solve the proposed AKM 3 C method. The extensive experimental results on eight public datasets show that the proposed AKM 3 C performs better than state-of-the-art multi-view clustering methods. The code can be downloaded at https://drive.google.com/file/d/1CQ0royrYxKFJdNLnbBQSbDrohtfH71di/view?usp=sharing . |
doi_str_mv | 10.1109/TCSVT.2020.3049005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9312643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9312643</ieee_id><sourcerecordid>2586590190</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-9a613e6a5e8abd069b819fcac296ab1beeb7df8276e92f5f57508de3dace594e3</originalsourceid><addsrcrecordid>eNotjUtLw0AUhQdRsFb_gG4CrqfeO5M7memuBF-0xYWx2zBJbmRKbGMeiv_eYl2dj8PHOUJcI8wQwd1l6esmmylQMNMQOwA6ERMkslIpoNMDA6G0CulcXPT9FgBjGycTMV8s1zqdR4vKt0P44mgp12MzhLZhuWa_66N630V_ldwE_o7SZuwH7sLu_VKc1b7p-eo_p-Lt4T5Ln-Tq5fE5XaxkQK0H6bxBzcYTW19UYFxh0dWlL5UzvsCCuUiq2qrEsFM11ZQQ2Ip15UsmF7OeitvjbtvtP0fuh3y7H7vd4TJXZA05QAcH6-ZoBWbO2y58-O4ndxqVibX-BQwxUjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586590190</pqid></control><display><type>article</type><title>AKM3C: Adaptive K-Multiple-Means for Multi-View Clustering</title><source>IEEE Xplore</source><creator>Hu, Yongli ; Song, Zuolong ; Wang, Boyue ; Gao, Junbin ; Sun, Yanfeng ; Yin, Baocai</creator><creatorcontrib>Hu, Yongli ; Song, Zuolong ; Wang, Boyue ; Gao, Junbin ; Sun, Yanfeng ; Yin, Baocai</creatorcontrib><description><![CDATA[With the popularity of cameras and sensors, massive data are captured from various view angles or modalities, which provide abundant complementary information and also bring great challenges for traditional clustering methods. In this article, we propose a novel Adaptive K-Multiple-Means for multi-view clustering method (AKM 3 C). Unlike traditional multi-view K-means methods by grouping samples into <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> clusters each with a cluster center in every view, the proposed AKM 3 C employs <inline-formula> <tex-math notation="LaTeX">M (M>C) </tex-math></inline-formula> sub-cluster centers in each view to reveal the sub-cluster structure in the multi-view data thus enhances the clustering performance. Additionally, to distinguish the importance of different views, instead of using empirical weights, AKM 3 C exploits the multi-view combination weights strategy to assign a weight to each view automatically and thus fuses the complementary information of different views properly to get an optimally shared bipartite graph, on which the Laplacian rank constraint is executed and the final clusters are obtained by directly partitioning. An efficient optimization algorithm proposed with complexity and convergence analysis is used to solve the proposed AKM 3 C method. The extensive experimental results on eight public datasets show that the proposed AKM 3 C performs better than state-of-the-art multi-view clustering methods. The code can be downloaded at https://drive.google.com/file/d/1CQ0royrYxKFJdNLnbBQSbDrohtfH71di/view?usp=sharing .]]></description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2020.3049005</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Bipartite graph ; Clustering ; Clustering methods ; Empirical analysis ; Fuses ; Graph theory ; Integrated works software ; K-means ; Kernel ; Laplacian rank constraint ; Matrix decomposition ; Multi-view clustering ; multiple means ; Optimization ; Tensors</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2021-11, Vol.31 (11), p.4214-4226</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9803-0256 ; 0000-0003-3121-1823 ; 0000-0002-0872-384X ; 0000-0002-2677-8342 ; 0000-0002-4369-1935 ; 0000-0003-0440-438X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9312643$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9312643$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Song, Zuolong</creatorcontrib><creatorcontrib>Wang, Boyue</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Sun, Yanfeng</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><title>AKM3C: Adaptive K-Multiple-Means for Multi-View Clustering</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description><![CDATA[With the popularity of cameras and sensors, massive data are captured from various view angles or modalities, which provide abundant complementary information and also bring great challenges for traditional clustering methods. In this article, we propose a novel Adaptive K-Multiple-Means for multi-view clustering method (AKM 3 C). Unlike traditional multi-view K-means methods by grouping samples into <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> clusters each with a cluster center in every view, the proposed AKM 3 C employs <inline-formula> <tex-math notation="LaTeX">M (M>C) </tex-math></inline-formula> sub-cluster centers in each view to reveal the sub-cluster structure in the multi-view data thus enhances the clustering performance. Additionally, to distinguish the importance of different views, instead of using empirical weights, AKM 3 C exploits the multi-view combination weights strategy to assign a weight to each view automatically and thus fuses the complementary information of different views properly to get an optimally shared bipartite graph, on which the Laplacian rank constraint is executed and the final clusters are obtained by directly partitioning. An efficient optimization algorithm proposed with complexity and convergence analysis is used to solve the proposed AKM 3 C method. The extensive experimental results on eight public datasets show that the proposed AKM 3 C performs better than state-of-the-art multi-view clustering methods. The code can be downloaded at https://drive.google.com/file/d/1CQ0royrYxKFJdNLnbBQSbDrohtfH71di/view?usp=sharing .]]></description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Bipartite graph</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Empirical analysis</subject><subject>Fuses</subject><subject>Graph theory</subject><subject>Integrated works software</subject><subject>K-means</subject><subject>Kernel</subject><subject>Laplacian rank constraint</subject><subject>Matrix decomposition</subject><subject>Multi-view clustering</subject><subject>multiple means</subject><subject>Optimization</subject><subject>Tensors</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjUtLw0AUhQdRsFb_gG4CrqfeO5M7memuBF-0xYWx2zBJbmRKbGMeiv_eYl2dj8PHOUJcI8wQwd1l6esmmylQMNMQOwA6ERMkslIpoNMDA6G0CulcXPT9FgBjGycTMV8s1zqdR4vKt0P44mgp12MzhLZhuWa_66N630V_ldwE_o7SZuwH7sLu_VKc1b7p-eo_p-Lt4T5Ln-Tq5fE5XaxkQK0H6bxBzcYTW19UYFxh0dWlL5UzvsCCuUiq2qrEsFM11ZQQ2Ip15UsmF7OeitvjbtvtP0fuh3y7H7vd4TJXZA05QAcH6-ZoBWbO2y58-O4ndxqVibX-BQwxUjk</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hu, Yongli</creator><creator>Song, Zuolong</creator><creator>Wang, Boyue</creator><creator>Gao, Junbin</creator><creator>Sun, Yanfeng</creator><creator>Yin, Baocai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9803-0256</orcidid><orcidid>https://orcid.org/0000-0003-3121-1823</orcidid><orcidid>https://orcid.org/0000-0002-0872-384X</orcidid><orcidid>https://orcid.org/0000-0002-2677-8342</orcidid><orcidid>https://orcid.org/0000-0002-4369-1935</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid></search><sort><creationdate>20211101</creationdate><title>AKM3C: Adaptive K-Multiple-Means for Multi-View Clustering</title><author>Hu, Yongli ; Song, Zuolong ; Wang, Boyue ; Gao, Junbin ; Sun, Yanfeng ; Yin, Baocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-9a613e6a5e8abd069b819fcac296ab1beeb7df8276e92f5f57508de3dace594e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Bipartite graph</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Empirical analysis</topic><topic>Fuses</topic><topic>Graph theory</topic><topic>Integrated works software</topic><topic>K-means</topic><topic>Kernel</topic><topic>Laplacian rank constraint</topic><topic>Matrix decomposition</topic><topic>Multi-view clustering</topic><topic>multiple means</topic><topic>Optimization</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Song, Zuolong</creatorcontrib><creatorcontrib>Wang, Boyue</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Sun, Yanfeng</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Yongli</au><au>Song, Zuolong</au><au>Wang, Boyue</au><au>Gao, Junbin</au><au>Sun, Yanfeng</au><au>Yin, Baocai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AKM3C: Adaptive K-Multiple-Means for Multi-View Clustering</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>31</volume><issue>11</issue><spage>4214</spage><epage>4226</epage><pages>4214-4226</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract><![CDATA[With the popularity of cameras and sensors, massive data are captured from various view angles or modalities, which provide abundant complementary information and also bring great challenges for traditional clustering methods. In this article, we propose a novel Adaptive K-Multiple-Means for multi-view clustering method (AKM 3 C). Unlike traditional multi-view K-means methods by grouping samples into <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> clusters each with a cluster center in every view, the proposed AKM 3 C employs <inline-formula> <tex-math notation="LaTeX">M (M>C) </tex-math></inline-formula> sub-cluster centers in each view to reveal the sub-cluster structure in the multi-view data thus enhances the clustering performance. Additionally, to distinguish the importance of different views, instead of using empirical weights, AKM 3 C exploits the multi-view combination weights strategy to assign a weight to each view automatically and thus fuses the complementary information of different views properly to get an optimally shared bipartite graph, on which the Laplacian rank constraint is executed and the final clusters are obtained by directly partitioning. An efficient optimization algorithm proposed with complexity and convergence analysis is used to solve the proposed AKM 3 C method. The extensive experimental results on eight public datasets show that the proposed AKM 3 C performs better than state-of-the-art multi-view clustering methods. The code can be downloaded at https://drive.google.com/file/d/1CQ0royrYxKFJdNLnbBQSbDrohtfH71di/view?usp=sharing .]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2020.3049005</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9803-0256</orcidid><orcidid>https://orcid.org/0000-0003-3121-1823</orcidid><orcidid>https://orcid.org/0000-0002-0872-384X</orcidid><orcidid>https://orcid.org/0000-0002-2677-8342</orcidid><orcidid>https://orcid.org/0000-0002-4369-1935</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2021-11, Vol.31 (11), p.4214-4226 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_ieee_primary_9312643 |
source | IEEE Xplore |
subjects | Adaptation models Algorithms Bipartite graph Clustering Clustering methods Empirical analysis Fuses Graph theory Integrated works software K-means Kernel Laplacian rank constraint Matrix decomposition Multi-view clustering multiple means Optimization Tensors |
title | AKM3C: Adaptive K-Multiple-Means for Multi-View Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AKM3C:%20Adaptive%20K-Multiple-Means%20for%20Multi-View%20Clustering&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Hu,%20Yongli&rft.date=2021-11-01&rft.volume=31&rft.issue=11&rft.spage=4214&rft.epage=4226&rft.pages=4214-4226&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2020.3049005&rft_dat=%3Cproquest_RIE%3E2586590190%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586590190&rft_id=info:pmid/&rft_ieee_id=9312643&rfr_iscdi=true |