AKM3C: Adaptive K-Multiple-Means for Multi-View Clustering

With the popularity of cameras and sensors, massive data are captured from various view angles or modalities, which provide abundant complementary information and also bring great challenges for traditional clustering methods. In this article, we propose a novel Adaptive K-Multiple-Means for multi-v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2021-11, Vol.31 (11), p.4214-4226
Hauptverfasser: Hu, Yongli, Song, Zuolong, Wang, Boyue, Gao, Junbin, Sun, Yanfeng, Yin, Baocai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4226
container_issue 11
container_start_page 4214
container_title IEEE transactions on circuits and systems for video technology
container_volume 31
creator Hu, Yongli
Song, Zuolong
Wang, Boyue
Gao, Junbin
Sun, Yanfeng
Yin, Baocai
description With the popularity of cameras and sensors, massive data are captured from various view angles or modalities, which provide abundant complementary information and also bring great challenges for traditional clustering methods. In this article, we propose a novel Adaptive K-Multiple-Means for multi-view clustering method (AKM 3 C). Unlike traditional multi-view K-means methods by grouping samples into C clusters each with a cluster center in every view, the proposed AKM 3 C employs M (M>C) sub-cluster centers in each view to reveal the sub-cluster structure in the multi-view data thus enhances the clustering performance. Additionally, to distinguish the importance of different views, instead of using empirical weights, AKM 3 C exploits the multi-view combination weights strategy to assign a weight to each view automatically and thus fuses the complementary information of different views properly to get an optimally shared bipartite graph, on which the Laplacian rank constraint is executed and the final clusters are obtained by directly partitioning. An efficient optimization algorithm proposed with complexity and convergence analysis is used to solve the proposed AKM 3 C method. The extensive experimental results on eight public datasets show that the proposed AKM 3 C performs better than state-of-the-art multi-view clustering methods. The code can be downloaded at https://drive.google.com/file/d/1CQ0royrYxKFJdNLnbBQSbDrohtfH71di/view?usp=sharing .
doi_str_mv 10.1109/TCSVT.2020.3049005
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9312643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9312643</ieee_id><sourcerecordid>2586590190</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-9a613e6a5e8abd069b819fcac296ab1beeb7df8276e92f5f57508de3dace594e3</originalsourceid><addsrcrecordid>eNotjUtLw0AUhQdRsFb_gG4CrqfeO5M7memuBF-0xYWx2zBJbmRKbGMeiv_eYl2dj8PHOUJcI8wQwd1l6esmmylQMNMQOwA6ERMkslIpoNMDA6G0CulcXPT9FgBjGycTMV8s1zqdR4vKt0P44mgp12MzhLZhuWa_66N630V_ldwE_o7SZuwH7sLu_VKc1b7p-eo_p-Lt4T5Ln-Tq5fE5XaxkQK0H6bxBzcYTW19UYFxh0dWlL5UzvsCCuUiq2qrEsFM11ZQQ2Ip15UsmF7OeitvjbtvtP0fuh3y7H7vd4TJXZA05QAcH6-ZoBWbO2y58-O4ndxqVibX-BQwxUjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586590190</pqid></control><display><type>article</type><title>AKM3C: Adaptive K-Multiple-Means for Multi-View Clustering</title><source>IEEE Xplore</source><creator>Hu, Yongli ; Song, Zuolong ; Wang, Boyue ; Gao, Junbin ; Sun, Yanfeng ; Yin, Baocai</creator><creatorcontrib>Hu, Yongli ; Song, Zuolong ; Wang, Boyue ; Gao, Junbin ; Sun, Yanfeng ; Yin, Baocai</creatorcontrib><description><![CDATA[With the popularity of cameras and sensors, massive data are captured from various view angles or modalities, which provide abundant complementary information and also bring great challenges for traditional clustering methods. In this article, we propose a novel Adaptive K-Multiple-Means for multi-view clustering method (AKM 3 C). Unlike traditional multi-view K-means methods by grouping samples into <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> clusters each with a cluster center in every view, the proposed AKM 3 C employs <inline-formula> <tex-math notation="LaTeX">M (M>C) </tex-math></inline-formula> sub-cluster centers in each view to reveal the sub-cluster structure in the multi-view data thus enhances the clustering performance. Additionally, to distinguish the importance of different views, instead of using empirical weights, AKM 3 C exploits the multi-view combination weights strategy to assign a weight to each view automatically and thus fuses the complementary information of different views properly to get an optimally shared bipartite graph, on which the Laplacian rank constraint is executed and the final clusters are obtained by directly partitioning. An efficient optimization algorithm proposed with complexity and convergence analysis is used to solve the proposed AKM 3 C method. The extensive experimental results on eight public datasets show that the proposed AKM 3 C performs better than state-of-the-art multi-view clustering methods. The code can be downloaded at https://drive.google.com/file/d/1CQ0royrYxKFJdNLnbBQSbDrohtfH71di/view?usp=sharing .]]></description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2020.3049005</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Bipartite graph ; Clustering ; Clustering methods ; Empirical analysis ; Fuses ; Graph theory ; Integrated works software ; K-means ; Kernel ; Laplacian rank constraint ; Matrix decomposition ; Multi-view clustering ; multiple means ; Optimization ; Tensors</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2021-11, Vol.31 (11), p.4214-4226</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9803-0256 ; 0000-0003-3121-1823 ; 0000-0002-0872-384X ; 0000-0002-2677-8342 ; 0000-0002-4369-1935 ; 0000-0003-0440-438X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9312643$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9312643$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Song, Zuolong</creatorcontrib><creatorcontrib>Wang, Boyue</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Sun, Yanfeng</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><title>AKM3C: Adaptive K-Multiple-Means for Multi-View Clustering</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description><![CDATA[With the popularity of cameras and sensors, massive data are captured from various view angles or modalities, which provide abundant complementary information and also bring great challenges for traditional clustering methods. In this article, we propose a novel Adaptive K-Multiple-Means for multi-view clustering method (AKM 3 C). Unlike traditional multi-view K-means methods by grouping samples into <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> clusters each with a cluster center in every view, the proposed AKM 3 C employs <inline-formula> <tex-math notation="LaTeX">M (M>C) </tex-math></inline-formula> sub-cluster centers in each view to reveal the sub-cluster structure in the multi-view data thus enhances the clustering performance. Additionally, to distinguish the importance of different views, instead of using empirical weights, AKM 3 C exploits the multi-view combination weights strategy to assign a weight to each view automatically and thus fuses the complementary information of different views properly to get an optimally shared bipartite graph, on which the Laplacian rank constraint is executed and the final clusters are obtained by directly partitioning. An efficient optimization algorithm proposed with complexity and convergence analysis is used to solve the proposed AKM 3 C method. The extensive experimental results on eight public datasets show that the proposed AKM 3 C performs better than state-of-the-art multi-view clustering methods. The code can be downloaded at https://drive.google.com/file/d/1CQ0royrYxKFJdNLnbBQSbDrohtfH71di/view?usp=sharing .]]></description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Bipartite graph</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Empirical analysis</subject><subject>Fuses</subject><subject>Graph theory</subject><subject>Integrated works software</subject><subject>K-means</subject><subject>Kernel</subject><subject>Laplacian rank constraint</subject><subject>Matrix decomposition</subject><subject>Multi-view clustering</subject><subject>multiple means</subject><subject>Optimization</subject><subject>Tensors</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjUtLw0AUhQdRsFb_gG4CrqfeO5M7memuBF-0xYWx2zBJbmRKbGMeiv_eYl2dj8PHOUJcI8wQwd1l6esmmylQMNMQOwA6ERMkslIpoNMDA6G0CulcXPT9FgBjGycTMV8s1zqdR4vKt0P44mgp12MzhLZhuWa_66N630V_ldwE_o7SZuwH7sLu_VKc1b7p-eo_p-Lt4T5Ln-Tq5fE5XaxkQK0H6bxBzcYTW19UYFxh0dWlL5UzvsCCuUiq2qrEsFM11ZQQ2Ip15UsmF7OeitvjbtvtP0fuh3y7H7vd4TJXZA05QAcH6-ZoBWbO2y58-O4ndxqVibX-BQwxUjk</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hu, Yongli</creator><creator>Song, Zuolong</creator><creator>Wang, Boyue</creator><creator>Gao, Junbin</creator><creator>Sun, Yanfeng</creator><creator>Yin, Baocai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9803-0256</orcidid><orcidid>https://orcid.org/0000-0003-3121-1823</orcidid><orcidid>https://orcid.org/0000-0002-0872-384X</orcidid><orcidid>https://orcid.org/0000-0002-2677-8342</orcidid><orcidid>https://orcid.org/0000-0002-4369-1935</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid></search><sort><creationdate>20211101</creationdate><title>AKM3C: Adaptive K-Multiple-Means for Multi-View Clustering</title><author>Hu, Yongli ; Song, Zuolong ; Wang, Boyue ; Gao, Junbin ; Sun, Yanfeng ; Yin, Baocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-9a613e6a5e8abd069b819fcac296ab1beeb7df8276e92f5f57508de3dace594e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Bipartite graph</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Empirical analysis</topic><topic>Fuses</topic><topic>Graph theory</topic><topic>Integrated works software</topic><topic>K-means</topic><topic>Kernel</topic><topic>Laplacian rank constraint</topic><topic>Matrix decomposition</topic><topic>Multi-view clustering</topic><topic>multiple means</topic><topic>Optimization</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Song, Zuolong</creatorcontrib><creatorcontrib>Wang, Boyue</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Sun, Yanfeng</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Yongli</au><au>Song, Zuolong</au><au>Wang, Boyue</au><au>Gao, Junbin</au><au>Sun, Yanfeng</au><au>Yin, Baocai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AKM3C: Adaptive K-Multiple-Means for Multi-View Clustering</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>31</volume><issue>11</issue><spage>4214</spage><epage>4226</epage><pages>4214-4226</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract><![CDATA[With the popularity of cameras and sensors, massive data are captured from various view angles or modalities, which provide abundant complementary information and also bring great challenges for traditional clustering methods. In this article, we propose a novel Adaptive K-Multiple-Means for multi-view clustering method (AKM 3 C). Unlike traditional multi-view K-means methods by grouping samples into <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> clusters each with a cluster center in every view, the proposed AKM 3 C employs <inline-formula> <tex-math notation="LaTeX">M (M>C) </tex-math></inline-formula> sub-cluster centers in each view to reveal the sub-cluster structure in the multi-view data thus enhances the clustering performance. Additionally, to distinguish the importance of different views, instead of using empirical weights, AKM 3 C exploits the multi-view combination weights strategy to assign a weight to each view automatically and thus fuses the complementary information of different views properly to get an optimally shared bipartite graph, on which the Laplacian rank constraint is executed and the final clusters are obtained by directly partitioning. An efficient optimization algorithm proposed with complexity and convergence analysis is used to solve the proposed AKM 3 C method. The extensive experimental results on eight public datasets show that the proposed AKM 3 C performs better than state-of-the-art multi-view clustering methods. The code can be downloaded at https://drive.google.com/file/d/1CQ0royrYxKFJdNLnbBQSbDrohtfH71di/view?usp=sharing .]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2020.3049005</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9803-0256</orcidid><orcidid>https://orcid.org/0000-0003-3121-1823</orcidid><orcidid>https://orcid.org/0000-0002-0872-384X</orcidid><orcidid>https://orcid.org/0000-0002-2677-8342</orcidid><orcidid>https://orcid.org/0000-0002-4369-1935</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2021-11, Vol.31 (11), p.4214-4226
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_9312643
source IEEE Xplore
subjects Adaptation models
Algorithms
Bipartite graph
Clustering
Clustering methods
Empirical analysis
Fuses
Graph theory
Integrated works software
K-means
Kernel
Laplacian rank constraint
Matrix decomposition
Multi-view clustering
multiple means
Optimization
Tensors
title AKM3C: Adaptive K-Multiple-Means for Multi-View Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AKM3C:%20Adaptive%20K-Multiple-Means%20for%20Multi-View%20Clustering&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Hu,%20Yongli&rft.date=2021-11-01&rft.volume=31&rft.issue=11&rft.spage=4214&rft.epage=4226&rft.pages=4214-4226&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2020.3049005&rft_dat=%3Cproquest_RIE%3E2586590190%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586590190&rft_id=info:pmid/&rft_ieee_id=9312643&rfr_iscdi=true