Random Access Channel Coding in the Finite Blocklength Regime

Consider a random access communication scenario over a channel whose operation is defined for any number of possible transmitters. As in the model recently introduced by Polyanskiy for the Multiple Access Channel (MAC) with a fixed, known number of transmitters, the channel is assumed to be invarian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2021-04, Vol.67 (4), p.2115-2140
Hauptverfasser: Yavas, Recep Can, Kostina, Victoria, Effros, Michelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2140
container_issue 4
container_start_page 2115
container_title IEEE transactions on information theory
container_volume 67
creator Yavas, Recep Can
Kostina, Victoria
Effros, Michelle
description Consider a random access communication scenario over a channel whose operation is defined for any number of possible transmitters. As in the model recently introduced by Polyanskiy for the Multiple Access Channel (MAC) with a fixed, known number of transmitters, the channel is assumed to be invariant to permutations on its inputs, and all active transmitters employ identical encoders. Unlike the Polyanskiy model, in the proposed scenario, neither the transmitters nor the receiver knows which transmitters are active. We refer to this agnostic communication setup as the Random Access Channel (RAC). Scheduled feedback of a finite number of bits is used to synchronize the transmitters. The decoder is tasked with determining from the channel output the number of active transmitters, k , and their messages but not which transmitter sent which message. The decoding procedure occurs at a time {n}_{t} depending on the decoder's estimate, t , of the number of active transmitters, k , thereby achieving a rate that varies with the number of active transmitters. Single-bit feedback at each time {n}_{i}, {i} \leq {t} , enables all transmitters to determine the end of one coding epoch and the start of the next. The central result of this work demonstrates the achievability on a RAC of performance that is first-order optimal for the MAC in operation during each coding epoch. While prior multiple access schemes for a fixed number of transmitters require 2^{k} - 1 simultaneous threshold rules, the proposed scheme uses a single threshold rule and achieves the same dispersion.
doi_str_mv 10.1109/TIT.2020.3047630
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9309262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9309262</ieee_id><sourcerecordid>2503502026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-9a5cd5b326f307ca8017f9fad1d52bd2452aac8d371d387840704a3e82eccd383</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJ134cPOhitVAQSj2HNJltU7fZutke_PemtHgaZnjeGeYh5J7BhDGonpaz5YQDh4kAWeQCLsiIKVVkVa7kJRkBsDKrpCyvyU2M29RKxfiIPC9McN2OvliLMdJ6Y0LAltad82FNfaDDBunUBz8gfW07-91iWA8busC13-EtuWpMG_HuXMfka_q2rD-y-ef7rH6ZZ1YIMWSVUdapleB5I6CwpgRWNFVjHHOKrxyXihtjSycK5kRZlBIKkEZgydHaNBFj8njau--7nwPGQW-7Qx_SSc0VCJX-5nmi4ETZvouxx0bve78z_a9moI-SdJKkj5L0WVKKPJwiHhH_8UpAxXMu_gB8Y2D4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503502026</pqid></control><display><type>article</type><title>Random Access Channel Coding in the Finite Blocklength Regime</title><source>IEEE Electronic Library (IEL)</source><creator>Yavas, Recep Can ; Kostina, Victoria ; Effros, Michelle</creator><creatorcontrib>Yavas, Recep Can ; Kostina, Victoria ; Effros, Michelle</creatorcontrib><description><![CDATA[Consider a random access communication scenario over a channel whose operation is defined for any number of possible transmitters. As in the model recently introduced by Polyanskiy for the Multiple Access Channel (MAC) with a fixed, known number of transmitters, the channel is assumed to be invariant to permutations on its inputs, and all active transmitters employ identical encoders. Unlike the Polyanskiy model, in the proposed scenario, neither the transmitters nor the receiver knows which transmitters are active. We refer to this agnostic communication setup as the Random Access Channel (RAC). Scheduled feedback of a finite number of bits is used to synchronize the transmitters. The decoder is tasked with determining from the channel output the number of active transmitters, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, and their messages but not which transmitter sent which message. The decoding procedure occurs at a time <inline-formula> <tex-math notation="LaTeX">{n}_{t} </tex-math></inline-formula> depending on the decoder's estimate, <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>, of the number of active transmitters, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, thereby achieving a rate that varies with the number of active transmitters. Single-bit feedback at each time <inline-formula> <tex-math notation="LaTeX">{n}_{i}, {i} \leq {t} </tex-math></inline-formula>, enables all transmitters to determine the end of one coding epoch and the start of the next. The central result of this work demonstrates the achievability on a RAC of performance that is first-order optimal for the MAC in operation during each coding epoch. While prior multiple access schemes for a fixed number of transmitters require <inline-formula> <tex-math notation="LaTeX">2^{k} - 1 </tex-math></inline-formula> simultaneous threshold rules, the proposed scheme uses a single threshold rule and achieves the same dispersion.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.3047630</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>achievability ; Channel coding ; Coders ; Coding ; Compounds ; Decoding ; Dispersion ; Encoding ; Feedback ; finite blocklength regime ; Maximum likelihood decoding ; Multiple access ; Permutations ; Random access ; random access channel ; rateless codes ; Receivers ; second-order asymptotics ; Task analysis ; Transmitters</subject><ispartof>IEEE transactions on information theory, 2021-04, Vol.67 (4), p.2115-2140</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-9a5cd5b326f307ca8017f9fad1d52bd2452aac8d371d387840704a3e82eccd383</citedby><cites>FETCH-LOGICAL-c333t-9a5cd5b326f307ca8017f9fad1d52bd2452aac8d371d387840704a3e82eccd383</cites><orcidid>0000-0002-2406-7440 ; 0000-0003-3757-0675 ; 0000-0002-5640-515X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9309262$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9309262$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yavas, Recep Can</creatorcontrib><creatorcontrib>Kostina, Victoria</creatorcontrib><creatorcontrib>Effros, Michelle</creatorcontrib><title>Random Access Channel Coding in the Finite Blocklength Regime</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[Consider a random access communication scenario over a channel whose operation is defined for any number of possible transmitters. As in the model recently introduced by Polyanskiy for the Multiple Access Channel (MAC) with a fixed, known number of transmitters, the channel is assumed to be invariant to permutations on its inputs, and all active transmitters employ identical encoders. Unlike the Polyanskiy model, in the proposed scenario, neither the transmitters nor the receiver knows which transmitters are active. We refer to this agnostic communication setup as the Random Access Channel (RAC). Scheduled feedback of a finite number of bits is used to synchronize the transmitters. The decoder is tasked with determining from the channel output the number of active transmitters, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, and their messages but not which transmitter sent which message. The decoding procedure occurs at a time <inline-formula> <tex-math notation="LaTeX">{n}_{t} </tex-math></inline-formula> depending on the decoder's estimate, <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>, of the number of active transmitters, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, thereby achieving a rate that varies with the number of active transmitters. Single-bit feedback at each time <inline-formula> <tex-math notation="LaTeX">{n}_{i}, {i} \leq {t} </tex-math></inline-formula>, enables all transmitters to determine the end of one coding epoch and the start of the next. The central result of this work demonstrates the achievability on a RAC of performance that is first-order optimal for the MAC in operation during each coding epoch. While prior multiple access schemes for a fixed number of transmitters require <inline-formula> <tex-math notation="LaTeX">2^{k} - 1 </tex-math></inline-formula> simultaneous threshold rules, the proposed scheme uses a single threshold rule and achieves the same dispersion.]]></description><subject>achievability</subject><subject>Channel coding</subject><subject>Coders</subject><subject>Coding</subject><subject>Compounds</subject><subject>Decoding</subject><subject>Dispersion</subject><subject>Encoding</subject><subject>Feedback</subject><subject>finite blocklength regime</subject><subject>Maximum likelihood decoding</subject><subject>Multiple access</subject><subject>Permutations</subject><subject>Random access</subject><subject>random access channel</subject><subject>rateless codes</subject><subject>Receivers</subject><subject>second-order asymptotics</subject><subject>Task analysis</subject><subject>Transmitters</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJ134cPOhitVAQSj2HNJltU7fZutke_PemtHgaZnjeGeYh5J7BhDGonpaz5YQDh4kAWeQCLsiIKVVkVa7kJRkBsDKrpCyvyU2M29RKxfiIPC9McN2OvliLMdJ6Y0LAltad82FNfaDDBunUBz8gfW07-91iWA8busC13-EtuWpMG_HuXMfka_q2rD-y-ef7rH6ZZ1YIMWSVUdapleB5I6CwpgRWNFVjHHOKrxyXihtjSycK5kRZlBIKkEZgydHaNBFj8njau--7nwPGQW-7Qx_SSc0VCJX-5nmi4ETZvouxx0bve78z_a9moI-SdJKkj5L0WVKKPJwiHhH_8UpAxXMu_gB8Y2D4</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yavas, Recep Can</creator><creator>Kostina, Victoria</creator><creator>Effros, Michelle</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2406-7440</orcidid><orcidid>https://orcid.org/0000-0003-3757-0675</orcidid><orcidid>https://orcid.org/0000-0002-5640-515X</orcidid></search><sort><creationdate>20210401</creationdate><title>Random Access Channel Coding in the Finite Blocklength Regime</title><author>Yavas, Recep Can ; Kostina, Victoria ; Effros, Michelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-9a5cd5b326f307ca8017f9fad1d52bd2452aac8d371d387840704a3e82eccd383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>achievability</topic><topic>Channel coding</topic><topic>Coders</topic><topic>Coding</topic><topic>Compounds</topic><topic>Decoding</topic><topic>Dispersion</topic><topic>Encoding</topic><topic>Feedback</topic><topic>finite blocklength regime</topic><topic>Maximum likelihood decoding</topic><topic>Multiple access</topic><topic>Permutations</topic><topic>Random access</topic><topic>random access channel</topic><topic>rateless codes</topic><topic>Receivers</topic><topic>second-order asymptotics</topic><topic>Task analysis</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yavas, Recep Can</creatorcontrib><creatorcontrib>Kostina, Victoria</creatorcontrib><creatorcontrib>Effros, Michelle</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yavas, Recep Can</au><au>Kostina, Victoria</au><au>Effros, Michelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Access Channel Coding in the Finite Blocklength Regime</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>67</volume><issue>4</issue><spage>2115</spage><epage>2140</epage><pages>2115-2140</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[Consider a random access communication scenario over a channel whose operation is defined for any number of possible transmitters. As in the model recently introduced by Polyanskiy for the Multiple Access Channel (MAC) with a fixed, known number of transmitters, the channel is assumed to be invariant to permutations on its inputs, and all active transmitters employ identical encoders. Unlike the Polyanskiy model, in the proposed scenario, neither the transmitters nor the receiver knows which transmitters are active. We refer to this agnostic communication setup as the Random Access Channel (RAC). Scheduled feedback of a finite number of bits is used to synchronize the transmitters. The decoder is tasked with determining from the channel output the number of active transmitters, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, and their messages but not which transmitter sent which message. The decoding procedure occurs at a time <inline-formula> <tex-math notation="LaTeX">{n}_{t} </tex-math></inline-formula> depending on the decoder's estimate, <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>, of the number of active transmitters, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, thereby achieving a rate that varies with the number of active transmitters. Single-bit feedback at each time <inline-formula> <tex-math notation="LaTeX">{n}_{i}, {i} \leq {t} </tex-math></inline-formula>, enables all transmitters to determine the end of one coding epoch and the start of the next. The central result of this work demonstrates the achievability on a RAC of performance that is first-order optimal for the MAC in operation during each coding epoch. While prior multiple access schemes for a fixed number of transmitters require <inline-formula> <tex-math notation="LaTeX">2^{k} - 1 </tex-math></inline-formula> simultaneous threshold rules, the proposed scheme uses a single threshold rule and achieves the same dispersion.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.3047630</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-2406-7440</orcidid><orcidid>https://orcid.org/0000-0003-3757-0675</orcidid><orcidid>https://orcid.org/0000-0002-5640-515X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2021-04, Vol.67 (4), p.2115-2140
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_9309262
source IEEE Electronic Library (IEL)
subjects achievability
Channel coding
Coders
Coding
Compounds
Decoding
Dispersion
Encoding
Feedback
finite blocklength regime
Maximum likelihood decoding
Multiple access
Permutations
Random access
random access channel
rateless codes
Receivers
second-order asymptotics
Task analysis
Transmitters
title Random Access Channel Coding in the Finite Blocklength Regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Access%20Channel%20Coding%20in%20the%20Finite%20Blocklength%20Regime&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Yavas,%20Recep%20Can&rft.date=2021-04-01&rft.volume=67&rft.issue=4&rft.spage=2115&rft.epage=2140&rft.pages=2115-2140&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.3047630&rft_dat=%3Cproquest_RIE%3E2503502026%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503502026&rft_id=info:pmid/&rft_ieee_id=9309262&rfr_iscdi=true