Random Access Channel Coding in the Finite Blocklength Regime
Consider a random access communication scenario over a channel whose operation is defined for any number of possible transmitters. As in the model recently introduced by Polyanskiy for the Multiple Access Channel (MAC) with a fixed, known number of transmitters, the channel is assumed to be invarian...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2021-04, Vol.67 (4), p.2115-2140 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2140 |
---|---|
container_issue | 4 |
container_start_page | 2115 |
container_title | IEEE transactions on information theory |
container_volume | 67 |
creator | Yavas, Recep Can Kostina, Victoria Effros, Michelle |
description | Consider a random access communication scenario over a channel whose operation is defined for any number of possible transmitters. As in the model recently introduced by Polyanskiy for the Multiple Access Channel (MAC) with a fixed, known number of transmitters, the channel is assumed to be invariant to permutations on its inputs, and all active transmitters employ identical encoders. Unlike the Polyanskiy model, in the proposed scenario, neither the transmitters nor the receiver knows which transmitters are active. We refer to this agnostic communication setup as the Random Access Channel (RAC). Scheduled feedback of a finite number of bits is used to synchronize the transmitters. The decoder is tasked with determining from the channel output the number of active transmitters, k , and their messages but not which transmitter sent which message. The decoding procedure occurs at a time {n}_{t} depending on the decoder's estimate, t , of the number of active transmitters, k , thereby achieving a rate that varies with the number of active transmitters. Single-bit feedback at each time {n}_{i}, {i} \leq {t} , enables all transmitters to determine the end of one coding epoch and the start of the next. The central result of this work demonstrates the achievability on a RAC of performance that is first-order optimal for the MAC in operation during each coding epoch. While prior multiple access schemes for a fixed number of transmitters require 2^{k} - 1 simultaneous threshold rules, the proposed scheme uses a single threshold rule and achieves the same dispersion. |
doi_str_mv | 10.1109/TIT.2020.3047630 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9309262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9309262</ieee_id><sourcerecordid>2503502026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-9a5cd5b326f307ca8017f9fad1d52bd2452aac8d371d387840704a3e82eccd383</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJ134cPOhitVAQSj2HNJltU7fZutke_PemtHgaZnjeGeYh5J7BhDGonpaz5YQDh4kAWeQCLsiIKVVkVa7kJRkBsDKrpCyvyU2M29RKxfiIPC9McN2OvliLMdJ6Y0LAltad82FNfaDDBunUBz8gfW07-91iWA8busC13-EtuWpMG_HuXMfka_q2rD-y-ef7rH6ZZ1YIMWSVUdapleB5I6CwpgRWNFVjHHOKrxyXihtjSycK5kRZlBIKkEZgydHaNBFj8njau--7nwPGQW-7Qx_SSc0VCJX-5nmi4ETZvouxx0bve78z_a9moI-SdJKkj5L0WVKKPJwiHhH_8UpAxXMu_gB8Y2D4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503502026</pqid></control><display><type>article</type><title>Random Access Channel Coding in the Finite Blocklength Regime</title><source>IEEE Electronic Library (IEL)</source><creator>Yavas, Recep Can ; Kostina, Victoria ; Effros, Michelle</creator><creatorcontrib>Yavas, Recep Can ; Kostina, Victoria ; Effros, Michelle</creatorcontrib><description><![CDATA[Consider a random access communication scenario over a channel whose operation is defined for any number of possible transmitters. As in the model recently introduced by Polyanskiy for the Multiple Access Channel (MAC) with a fixed, known number of transmitters, the channel is assumed to be invariant to permutations on its inputs, and all active transmitters employ identical encoders. Unlike the Polyanskiy model, in the proposed scenario, neither the transmitters nor the receiver knows which transmitters are active. We refer to this agnostic communication setup as the Random Access Channel (RAC). Scheduled feedback of a finite number of bits is used to synchronize the transmitters. The decoder is tasked with determining from the channel output the number of active transmitters, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, and their messages but not which transmitter sent which message. The decoding procedure occurs at a time <inline-formula> <tex-math notation="LaTeX">{n}_{t} </tex-math></inline-formula> depending on the decoder's estimate, <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>, of the number of active transmitters, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, thereby achieving a rate that varies with the number of active transmitters. Single-bit feedback at each time <inline-formula> <tex-math notation="LaTeX">{n}_{i}, {i} \leq {t} </tex-math></inline-formula>, enables all transmitters to determine the end of one coding epoch and the start of the next. The central result of this work demonstrates the achievability on a RAC of performance that is first-order optimal for the MAC in operation during each coding epoch. While prior multiple access schemes for a fixed number of transmitters require <inline-formula> <tex-math notation="LaTeX">2^{k} - 1 </tex-math></inline-formula> simultaneous threshold rules, the proposed scheme uses a single threshold rule and achieves the same dispersion.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.3047630</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>achievability ; Channel coding ; Coders ; Coding ; Compounds ; Decoding ; Dispersion ; Encoding ; Feedback ; finite blocklength regime ; Maximum likelihood decoding ; Multiple access ; Permutations ; Random access ; random access channel ; rateless codes ; Receivers ; second-order asymptotics ; Task analysis ; Transmitters</subject><ispartof>IEEE transactions on information theory, 2021-04, Vol.67 (4), p.2115-2140</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-9a5cd5b326f307ca8017f9fad1d52bd2452aac8d371d387840704a3e82eccd383</citedby><cites>FETCH-LOGICAL-c333t-9a5cd5b326f307ca8017f9fad1d52bd2452aac8d371d387840704a3e82eccd383</cites><orcidid>0000-0002-2406-7440 ; 0000-0003-3757-0675 ; 0000-0002-5640-515X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9309262$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9309262$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yavas, Recep Can</creatorcontrib><creatorcontrib>Kostina, Victoria</creatorcontrib><creatorcontrib>Effros, Michelle</creatorcontrib><title>Random Access Channel Coding in the Finite Blocklength Regime</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[Consider a random access communication scenario over a channel whose operation is defined for any number of possible transmitters. As in the model recently introduced by Polyanskiy for the Multiple Access Channel (MAC) with a fixed, known number of transmitters, the channel is assumed to be invariant to permutations on its inputs, and all active transmitters employ identical encoders. Unlike the Polyanskiy model, in the proposed scenario, neither the transmitters nor the receiver knows which transmitters are active. We refer to this agnostic communication setup as the Random Access Channel (RAC). Scheduled feedback of a finite number of bits is used to synchronize the transmitters. The decoder is tasked with determining from the channel output the number of active transmitters, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, and their messages but not which transmitter sent which message. The decoding procedure occurs at a time <inline-formula> <tex-math notation="LaTeX">{n}_{t} </tex-math></inline-formula> depending on the decoder's estimate, <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>, of the number of active transmitters, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, thereby achieving a rate that varies with the number of active transmitters. Single-bit feedback at each time <inline-formula> <tex-math notation="LaTeX">{n}_{i}, {i} \leq {t} </tex-math></inline-formula>, enables all transmitters to determine the end of one coding epoch and the start of the next. The central result of this work demonstrates the achievability on a RAC of performance that is first-order optimal for the MAC in operation during each coding epoch. While prior multiple access schemes for a fixed number of transmitters require <inline-formula> <tex-math notation="LaTeX">2^{k} - 1 </tex-math></inline-formula> simultaneous threshold rules, the proposed scheme uses a single threshold rule and achieves the same dispersion.]]></description><subject>achievability</subject><subject>Channel coding</subject><subject>Coders</subject><subject>Coding</subject><subject>Compounds</subject><subject>Decoding</subject><subject>Dispersion</subject><subject>Encoding</subject><subject>Feedback</subject><subject>finite blocklength regime</subject><subject>Maximum likelihood decoding</subject><subject>Multiple access</subject><subject>Permutations</subject><subject>Random access</subject><subject>random access channel</subject><subject>rateless codes</subject><subject>Receivers</subject><subject>second-order asymptotics</subject><subject>Task analysis</subject><subject>Transmitters</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJ134cPOhitVAQSj2HNJltU7fZutke_PemtHgaZnjeGeYh5J7BhDGonpaz5YQDh4kAWeQCLsiIKVVkVa7kJRkBsDKrpCyvyU2M29RKxfiIPC9McN2OvliLMdJ6Y0LAltad82FNfaDDBunUBz8gfW07-91iWA8busC13-EtuWpMG_HuXMfka_q2rD-y-ef7rH6ZZ1YIMWSVUdapleB5I6CwpgRWNFVjHHOKrxyXihtjSycK5kRZlBIKkEZgydHaNBFj8njau--7nwPGQW-7Qx_SSc0VCJX-5nmi4ETZvouxx0bve78z_a9moI-SdJKkj5L0WVKKPJwiHhH_8UpAxXMu_gB8Y2D4</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yavas, Recep Can</creator><creator>Kostina, Victoria</creator><creator>Effros, Michelle</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2406-7440</orcidid><orcidid>https://orcid.org/0000-0003-3757-0675</orcidid><orcidid>https://orcid.org/0000-0002-5640-515X</orcidid></search><sort><creationdate>20210401</creationdate><title>Random Access Channel Coding in the Finite Blocklength Regime</title><author>Yavas, Recep Can ; Kostina, Victoria ; Effros, Michelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-9a5cd5b326f307ca8017f9fad1d52bd2452aac8d371d387840704a3e82eccd383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>achievability</topic><topic>Channel coding</topic><topic>Coders</topic><topic>Coding</topic><topic>Compounds</topic><topic>Decoding</topic><topic>Dispersion</topic><topic>Encoding</topic><topic>Feedback</topic><topic>finite blocklength regime</topic><topic>Maximum likelihood decoding</topic><topic>Multiple access</topic><topic>Permutations</topic><topic>Random access</topic><topic>random access channel</topic><topic>rateless codes</topic><topic>Receivers</topic><topic>second-order asymptotics</topic><topic>Task analysis</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yavas, Recep Can</creatorcontrib><creatorcontrib>Kostina, Victoria</creatorcontrib><creatorcontrib>Effros, Michelle</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yavas, Recep Can</au><au>Kostina, Victoria</au><au>Effros, Michelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Access Channel Coding in the Finite Blocklength Regime</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>67</volume><issue>4</issue><spage>2115</spage><epage>2140</epage><pages>2115-2140</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[Consider a random access communication scenario over a channel whose operation is defined for any number of possible transmitters. As in the model recently introduced by Polyanskiy for the Multiple Access Channel (MAC) with a fixed, known number of transmitters, the channel is assumed to be invariant to permutations on its inputs, and all active transmitters employ identical encoders. Unlike the Polyanskiy model, in the proposed scenario, neither the transmitters nor the receiver knows which transmitters are active. We refer to this agnostic communication setup as the Random Access Channel (RAC). Scheduled feedback of a finite number of bits is used to synchronize the transmitters. The decoder is tasked with determining from the channel output the number of active transmitters, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, and their messages but not which transmitter sent which message. The decoding procedure occurs at a time <inline-formula> <tex-math notation="LaTeX">{n}_{t} </tex-math></inline-formula> depending on the decoder's estimate, <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>, of the number of active transmitters, <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>, thereby achieving a rate that varies with the number of active transmitters. Single-bit feedback at each time <inline-formula> <tex-math notation="LaTeX">{n}_{i}, {i} \leq {t} </tex-math></inline-formula>, enables all transmitters to determine the end of one coding epoch and the start of the next. The central result of this work demonstrates the achievability on a RAC of performance that is first-order optimal for the MAC in operation during each coding epoch. While prior multiple access schemes for a fixed number of transmitters require <inline-formula> <tex-math notation="LaTeX">2^{k} - 1 </tex-math></inline-formula> simultaneous threshold rules, the proposed scheme uses a single threshold rule and achieves the same dispersion.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.3047630</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-2406-7440</orcidid><orcidid>https://orcid.org/0000-0003-3757-0675</orcidid><orcidid>https://orcid.org/0000-0002-5640-515X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2021-04, Vol.67 (4), p.2115-2140 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_9309262 |
source | IEEE Electronic Library (IEL) |
subjects | achievability Channel coding Coders Coding Compounds Decoding Dispersion Encoding Feedback finite blocklength regime Maximum likelihood decoding Multiple access Permutations Random access random access channel rateless codes Receivers second-order asymptotics Task analysis Transmitters |
title | Random Access Channel Coding in the Finite Blocklength Regime |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Access%20Channel%20Coding%20in%20the%20Finite%20Blocklength%20Regime&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Yavas,%20Recep%20Can&rft.date=2021-04-01&rft.volume=67&rft.issue=4&rft.spage=2115&rft.epage=2140&rft.pages=2115-2140&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.3047630&rft_dat=%3Cproquest_RIE%3E2503502026%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503502026&rft_id=info:pmid/&rft_ieee_id=9309262&rfr_iscdi=true |