Tackling Small Data Challenges in Visual Fire Detection: A Deep Convolutional Generative Adversarial Network Approach
Fire detection technologies remain a critical component of building automation. With the recent significant advances in computer vision, visual fire detection methods have been developed and integrated into building surveillance systems. Overfitting and accuracy challenges remain in fire detection w...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021-01, Vol.9, p.3936-3946 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3946 |
---|---|
container_issue | |
container_start_page | 3936 |
container_title | IEEE access |
container_volume | 9 |
creator | Xu, Zhaoyi Guo, Yanjie Saleh, Joseph Homer |
description | Fire detection technologies remain a critical component of building automation. With the recent significant advances in computer vision, visual fire detection methods have been developed and integrated into building surveillance systems. Overfitting and accuracy challenges remain in fire detection when training datasets are limited. In this work, we tackle these challenges by developing a deep convolutional generative adversarial network (DCGAN) for highly accurate visual fire detection when training images are limited. Our model addresses three types of errors in visual fire detection with small training datasets: model overfitting, fire probability overestimation, and fire probability underestimation. The DCGAN includes a generator of fake fire images for self-supervised learning (SSL) and a discriminator for image classification. We designed computational experiments with high-quality datasets to test and validate our model against other supervised learning approaches. We also benchmarked the performance of the DCGAN against a best-in-class deep visual fire detection model. The results show that our model significantly outperforms other fire detection models on all performance metrics when trained with the same small dataset. The results demonstrate that the DCGAN effectively mitigates the three types of error when the training dataset is limited. |
doi_str_mv | 10.1109/ACCESS.2020.3047764 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9309261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9309261</ieee_id><doaj_id>oai_doaj_org_article_49cfe9e1d8e64ab5986a12d7e8328c60</doaj_id><sourcerecordid>2477251464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-730edc9927fc90fcb4d0936e4829ac5dc3d8f50e13b0fffd3786424eb00c5ec3</originalsourceid><addsrcrecordid>eNpNUU1P3DAQjaoiFQG_gIulnnfrrzg2tyh8FAmVw656tbz2ePES4sVOFvHv6yUIdS4zfnrvjcavqi4JXhKC1a-2625WqyXFFC8Z5k0j-LfqlBKhFqxm4vt_84_qIucdLiULVDen1bQ29rkPwxatXkzfo2szGtQ9lRGGLWQUBvQ35Mn06DYkQNcwgh1DHK5QWx6wR10cDrGfjlgh3cEAyYzhAKh1B0jZpFDgPzC-xfSM2v0-RWOfzqsTb_oMF5_9rFrf3qy734uHx7v7rn1YWN7IcdEwDM4qRRtvFfZ2wx1WTACXVBlbO8uc9DUGwjbYe-9YIwWnHDYY2xosO6vuZ1sXzU7vU3gx6V1HE_QHENNWmzQG24PmynpQQJwEwc2mVlIYQl0DklFpBS5eP2evcsHrBHnUuzilcnPWtPw5rQkXvLDYzLIp5pzAf20lWB_T0nNa-piW_kyrqC5nVQCAL4ViWFFB2D_ShZFU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477251464</pqid></control><display><type>article</type><title>Tackling Small Data Challenges in Visual Fire Detection: A Deep Convolutional Generative Adversarial Network Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xu, Zhaoyi ; Guo, Yanjie ; Saleh, Joseph Homer</creator><creatorcontrib>Xu, Zhaoyi ; Guo, Yanjie ; Saleh, Joseph Homer</creatorcontrib><description>Fire detection technologies remain a critical component of building automation. With the recent significant advances in computer vision, visual fire detection methods have been developed and integrated into building surveillance systems. Overfitting and accuracy challenges remain in fire detection when training datasets are limited. In this work, we tackle these challenges by developing a deep convolutional generative adversarial network (DCGAN) for highly accurate visual fire detection when training images are limited. Our model addresses three types of errors in visual fire detection with small training datasets: model overfitting, fire probability overestimation, and fire probability underestimation. The DCGAN includes a generator of fake fire images for self-supervised learning (SSL) and a discriminator for image classification. We designed computational experiments with high-quality datasets to test and validate our model against other supervised learning approaches. We also benchmarked the performance of the DCGAN against a best-in-class deep visual fire detection model. The results show that our model significantly outperforms other fire detection models on all performance metrics when trained with the same small dataset. The results demonstrate that the DCGAN effectively mitigates the three types of error when the training dataset is limited.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3047764</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Building automation ; Computational modeling ; Computer architecture ; Computer vision ; Critical components ; Datasets ; Deep convolutional generative adversarial network ; Fire detection ; Gallium nitride ; Generative adversarial networks ; Generators ; Image classification ; Performance measurement ; self-supervised learning ; Supervised learning ; Surveillance systems ; Training ; visual fire detection ; Visualization</subject><ispartof>IEEE access, 2021-01, Vol.9, p.3936-3946</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-730edc9927fc90fcb4d0936e4829ac5dc3d8f50e13b0fffd3786424eb00c5ec3</citedby><cites>FETCH-LOGICAL-c478t-730edc9927fc90fcb4d0936e4829ac5dc3d8f50e13b0fffd3786424eb00c5ec3</cites><orcidid>0000-0002-8498-3483 ; 0000-0001-7590-9399 ; 0000-0002-1115-7383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9309261$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Xu, Zhaoyi</creatorcontrib><creatorcontrib>Guo, Yanjie</creatorcontrib><creatorcontrib>Saleh, Joseph Homer</creatorcontrib><title>Tackling Small Data Challenges in Visual Fire Detection: A Deep Convolutional Generative Adversarial Network Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>Fire detection technologies remain a critical component of building automation. With the recent significant advances in computer vision, visual fire detection methods have been developed and integrated into building surveillance systems. Overfitting and accuracy challenges remain in fire detection when training datasets are limited. In this work, we tackle these challenges by developing a deep convolutional generative adversarial network (DCGAN) for highly accurate visual fire detection when training images are limited. Our model addresses three types of errors in visual fire detection with small training datasets: model overfitting, fire probability overestimation, and fire probability underestimation. The DCGAN includes a generator of fake fire images for self-supervised learning (SSL) and a discriminator for image classification. We designed computational experiments with high-quality datasets to test and validate our model against other supervised learning approaches. We also benchmarked the performance of the DCGAN against a best-in-class deep visual fire detection model. The results show that our model significantly outperforms other fire detection models on all performance metrics when trained with the same small dataset. The results demonstrate that the DCGAN effectively mitigates the three types of error when the training dataset is limited.</description><subject>Building automation</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Critical components</subject><subject>Datasets</subject><subject>Deep convolutional generative adversarial network</subject><subject>Fire detection</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Image classification</subject><subject>Performance measurement</subject><subject>self-supervised learning</subject><subject>Supervised learning</subject><subject>Surveillance systems</subject><subject>Training</subject><subject>visual fire detection</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P3DAQjaoiFQG_gIulnnfrrzg2tyh8FAmVw656tbz2ePES4sVOFvHv6yUIdS4zfnrvjcavqi4JXhKC1a-2625WqyXFFC8Z5k0j-LfqlBKhFqxm4vt_84_qIucdLiULVDen1bQ29rkPwxatXkzfo2szGtQ9lRGGLWQUBvQ35Mn06DYkQNcwgh1DHK5QWx6wR10cDrGfjlgh3cEAyYzhAKh1B0jZpFDgPzC-xfSM2v0-RWOfzqsTb_oMF5_9rFrf3qy734uHx7v7rn1YWN7IcdEwDM4qRRtvFfZ2wx1WTACXVBlbO8uc9DUGwjbYe-9YIwWnHDYY2xosO6vuZ1sXzU7vU3gx6V1HE_QHENNWmzQG24PmynpQQJwEwc2mVlIYQl0DklFpBS5eP2evcsHrBHnUuzilcnPWtPw5rQkXvLDYzLIp5pzAf20lWB_T0nNa-piW_kyrqC5nVQCAL4ViWFFB2D_ShZFU</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Xu, Zhaoyi</creator><creator>Guo, Yanjie</creator><creator>Saleh, Joseph Homer</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8498-3483</orcidid><orcidid>https://orcid.org/0000-0001-7590-9399</orcidid><orcidid>https://orcid.org/0000-0002-1115-7383</orcidid></search><sort><creationdate>20210101</creationdate><title>Tackling Small Data Challenges in Visual Fire Detection: A Deep Convolutional Generative Adversarial Network Approach</title><author>Xu, Zhaoyi ; Guo, Yanjie ; Saleh, Joseph Homer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-730edc9927fc90fcb4d0936e4829ac5dc3d8f50e13b0fffd3786424eb00c5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Building automation</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Critical components</topic><topic>Datasets</topic><topic>Deep convolutional generative adversarial network</topic><topic>Fire detection</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Image classification</topic><topic>Performance measurement</topic><topic>self-supervised learning</topic><topic>Supervised learning</topic><topic>Surveillance systems</topic><topic>Training</topic><topic>visual fire detection</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhaoyi</creatorcontrib><creatorcontrib>Guo, Yanjie</creatorcontrib><creatorcontrib>Saleh, Joseph Homer</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zhaoyi</au><au>Guo, Yanjie</au><au>Saleh, Joseph Homer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tackling Small Data Challenges in Visual Fire Detection: A Deep Convolutional Generative Adversarial Network Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>3936</spage><epage>3946</epage><pages>3936-3946</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Fire detection technologies remain a critical component of building automation. With the recent significant advances in computer vision, visual fire detection methods have been developed and integrated into building surveillance systems. Overfitting and accuracy challenges remain in fire detection when training datasets are limited. In this work, we tackle these challenges by developing a deep convolutional generative adversarial network (DCGAN) for highly accurate visual fire detection when training images are limited. Our model addresses three types of errors in visual fire detection with small training datasets: model overfitting, fire probability overestimation, and fire probability underestimation. The DCGAN includes a generator of fake fire images for self-supervised learning (SSL) and a discriminator for image classification. We designed computational experiments with high-quality datasets to test and validate our model against other supervised learning approaches. We also benchmarked the performance of the DCGAN against a best-in-class deep visual fire detection model. The results show that our model significantly outperforms other fire detection models on all performance metrics when trained with the same small dataset. The results demonstrate that the DCGAN effectively mitigates the three types of error when the training dataset is limited.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3047764</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8498-3483</orcidid><orcidid>https://orcid.org/0000-0001-7590-9399</orcidid><orcidid>https://orcid.org/0000-0002-1115-7383</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021-01, Vol.9, p.3936-3946 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9309261 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Building automation Computational modeling Computer architecture Computer vision Critical components Datasets Deep convolutional generative adversarial network Fire detection Gallium nitride Generative adversarial networks Generators Image classification Performance measurement self-supervised learning Supervised learning Surveillance systems Training visual fire detection Visualization |
title | Tackling Small Data Challenges in Visual Fire Detection: A Deep Convolutional Generative Adversarial Network Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tackling%20Small%20Data%20Challenges%20in%20Visual%20Fire%20Detection:%20A%20Deep%20Convolutional%20Generative%20Adversarial%20Network%20Approach&rft.jtitle=IEEE%20access&rft.au=Xu,%20Zhaoyi&rft.date=2021-01-01&rft.volume=9&rft.spage=3936&rft.epage=3946&rft.pages=3936-3946&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3047764&rft_dat=%3Cproquest_ieee_%3E2477251464%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477251464&rft_id=info:pmid/&rft_ieee_id=9309261&rft_doaj_id=oai_doaj_org_article_49cfe9e1d8e64ab5986a12d7e8328c60&rfr_iscdi=true |