Tackling Small Data Challenges in Visual Fire Detection: A Deep Convolutional Generative Adversarial Network Approach

Fire detection technologies remain a critical component of building automation. With the recent significant advances in computer vision, visual fire detection methods have been developed and integrated into building surveillance systems. Overfitting and accuracy challenges remain in fire detection w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021-01, Vol.9, p.3936-3946
Hauptverfasser: Xu, Zhaoyi, Guo, Yanjie, Saleh, Joseph Homer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3946
container_issue
container_start_page 3936
container_title IEEE access
container_volume 9
creator Xu, Zhaoyi
Guo, Yanjie
Saleh, Joseph Homer
description Fire detection technologies remain a critical component of building automation. With the recent significant advances in computer vision, visual fire detection methods have been developed and integrated into building surveillance systems. Overfitting and accuracy challenges remain in fire detection when training datasets are limited. In this work, we tackle these challenges by developing a deep convolutional generative adversarial network (DCGAN) for highly accurate visual fire detection when training images are limited. Our model addresses three types of errors in visual fire detection with small training datasets: model overfitting, fire probability overestimation, and fire probability underestimation. The DCGAN includes a generator of fake fire images for self-supervised learning (SSL) and a discriminator for image classification. We designed computational experiments with high-quality datasets to test and validate our model against other supervised learning approaches. We also benchmarked the performance of the DCGAN against a best-in-class deep visual fire detection model. The results show that our model significantly outperforms other fire detection models on all performance metrics when trained with the same small dataset. The results demonstrate that the DCGAN effectively mitigates the three types of error when the training dataset is limited.
doi_str_mv 10.1109/ACCESS.2020.3047764
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9309261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9309261</ieee_id><doaj_id>oai_doaj_org_article_49cfe9e1d8e64ab5986a12d7e8328c60</doaj_id><sourcerecordid>2477251464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-730edc9927fc90fcb4d0936e4829ac5dc3d8f50e13b0fffd3786424eb00c5ec3</originalsourceid><addsrcrecordid>eNpNUU1P3DAQjaoiFQG_gIulnnfrrzg2tyh8FAmVw656tbz2ePES4sVOFvHv6yUIdS4zfnrvjcavqi4JXhKC1a-2625WqyXFFC8Z5k0j-LfqlBKhFqxm4vt_84_qIucdLiULVDen1bQ29rkPwxatXkzfo2szGtQ9lRGGLWQUBvQ35Mn06DYkQNcwgh1DHK5QWx6wR10cDrGfjlgh3cEAyYzhAKh1B0jZpFDgPzC-xfSM2v0-RWOfzqsTb_oMF5_9rFrf3qy734uHx7v7rn1YWN7IcdEwDM4qRRtvFfZ2wx1WTACXVBlbO8uc9DUGwjbYe-9YIwWnHDYY2xosO6vuZ1sXzU7vU3gx6V1HE_QHENNWmzQG24PmynpQQJwEwc2mVlIYQl0DklFpBS5eP2evcsHrBHnUuzilcnPWtPw5rQkXvLDYzLIp5pzAf20lWB_T0nNa-piW_kyrqC5nVQCAL4ViWFFB2D_ShZFU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477251464</pqid></control><display><type>article</type><title>Tackling Small Data Challenges in Visual Fire Detection: A Deep Convolutional Generative Adversarial Network Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xu, Zhaoyi ; Guo, Yanjie ; Saleh, Joseph Homer</creator><creatorcontrib>Xu, Zhaoyi ; Guo, Yanjie ; Saleh, Joseph Homer</creatorcontrib><description>Fire detection technologies remain a critical component of building automation. With the recent significant advances in computer vision, visual fire detection methods have been developed and integrated into building surveillance systems. Overfitting and accuracy challenges remain in fire detection when training datasets are limited. In this work, we tackle these challenges by developing a deep convolutional generative adversarial network (DCGAN) for highly accurate visual fire detection when training images are limited. Our model addresses three types of errors in visual fire detection with small training datasets: model overfitting, fire probability overestimation, and fire probability underestimation. The DCGAN includes a generator of fake fire images for self-supervised learning (SSL) and a discriminator for image classification. We designed computational experiments with high-quality datasets to test and validate our model against other supervised learning approaches. We also benchmarked the performance of the DCGAN against a best-in-class deep visual fire detection model. The results show that our model significantly outperforms other fire detection models on all performance metrics when trained with the same small dataset. The results demonstrate that the DCGAN effectively mitigates the three types of error when the training dataset is limited.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3047764</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Building automation ; Computational modeling ; Computer architecture ; Computer vision ; Critical components ; Datasets ; Deep convolutional generative adversarial network ; Fire detection ; Gallium nitride ; Generative adversarial networks ; Generators ; Image classification ; Performance measurement ; self-supervised learning ; Supervised learning ; Surveillance systems ; Training ; visual fire detection ; Visualization</subject><ispartof>IEEE access, 2021-01, Vol.9, p.3936-3946</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-730edc9927fc90fcb4d0936e4829ac5dc3d8f50e13b0fffd3786424eb00c5ec3</citedby><cites>FETCH-LOGICAL-c478t-730edc9927fc90fcb4d0936e4829ac5dc3d8f50e13b0fffd3786424eb00c5ec3</cites><orcidid>0000-0002-8498-3483 ; 0000-0001-7590-9399 ; 0000-0002-1115-7383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9309261$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Xu, Zhaoyi</creatorcontrib><creatorcontrib>Guo, Yanjie</creatorcontrib><creatorcontrib>Saleh, Joseph Homer</creatorcontrib><title>Tackling Small Data Challenges in Visual Fire Detection: A Deep Convolutional Generative Adversarial Network Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>Fire detection technologies remain a critical component of building automation. With the recent significant advances in computer vision, visual fire detection methods have been developed and integrated into building surveillance systems. Overfitting and accuracy challenges remain in fire detection when training datasets are limited. In this work, we tackle these challenges by developing a deep convolutional generative adversarial network (DCGAN) for highly accurate visual fire detection when training images are limited. Our model addresses three types of errors in visual fire detection with small training datasets: model overfitting, fire probability overestimation, and fire probability underestimation. The DCGAN includes a generator of fake fire images for self-supervised learning (SSL) and a discriminator for image classification. We designed computational experiments with high-quality datasets to test and validate our model against other supervised learning approaches. We also benchmarked the performance of the DCGAN against a best-in-class deep visual fire detection model. The results show that our model significantly outperforms other fire detection models on all performance metrics when trained with the same small dataset. The results demonstrate that the DCGAN effectively mitigates the three types of error when the training dataset is limited.</description><subject>Building automation</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Critical components</subject><subject>Datasets</subject><subject>Deep convolutional generative adversarial network</subject><subject>Fire detection</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Image classification</subject><subject>Performance measurement</subject><subject>self-supervised learning</subject><subject>Supervised learning</subject><subject>Surveillance systems</subject><subject>Training</subject><subject>visual fire detection</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P3DAQjaoiFQG_gIulnnfrrzg2tyh8FAmVw656tbz2ePES4sVOFvHv6yUIdS4zfnrvjcavqi4JXhKC1a-2625WqyXFFC8Z5k0j-LfqlBKhFqxm4vt_84_qIucdLiULVDen1bQ29rkPwxatXkzfo2szGtQ9lRGGLWQUBvQ35Mn06DYkQNcwgh1DHK5QWx6wR10cDrGfjlgh3cEAyYzhAKh1B0jZpFDgPzC-xfSM2v0-RWOfzqsTb_oMF5_9rFrf3qy734uHx7v7rn1YWN7IcdEwDM4qRRtvFfZ2wx1WTACXVBlbO8uc9DUGwjbYe-9YIwWnHDYY2xosO6vuZ1sXzU7vU3gx6V1HE_QHENNWmzQG24PmynpQQJwEwc2mVlIYQl0DklFpBS5eP2evcsHrBHnUuzilcnPWtPw5rQkXvLDYzLIp5pzAf20lWB_T0nNa-piW_kyrqC5nVQCAL4ViWFFB2D_ShZFU</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Xu, Zhaoyi</creator><creator>Guo, Yanjie</creator><creator>Saleh, Joseph Homer</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8498-3483</orcidid><orcidid>https://orcid.org/0000-0001-7590-9399</orcidid><orcidid>https://orcid.org/0000-0002-1115-7383</orcidid></search><sort><creationdate>20210101</creationdate><title>Tackling Small Data Challenges in Visual Fire Detection: A Deep Convolutional Generative Adversarial Network Approach</title><author>Xu, Zhaoyi ; Guo, Yanjie ; Saleh, Joseph Homer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-730edc9927fc90fcb4d0936e4829ac5dc3d8f50e13b0fffd3786424eb00c5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Building automation</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Critical components</topic><topic>Datasets</topic><topic>Deep convolutional generative adversarial network</topic><topic>Fire detection</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Image classification</topic><topic>Performance measurement</topic><topic>self-supervised learning</topic><topic>Supervised learning</topic><topic>Surveillance systems</topic><topic>Training</topic><topic>visual fire detection</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhaoyi</creatorcontrib><creatorcontrib>Guo, Yanjie</creatorcontrib><creatorcontrib>Saleh, Joseph Homer</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zhaoyi</au><au>Guo, Yanjie</au><au>Saleh, Joseph Homer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tackling Small Data Challenges in Visual Fire Detection: A Deep Convolutional Generative Adversarial Network Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>3936</spage><epage>3946</epage><pages>3936-3946</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Fire detection technologies remain a critical component of building automation. With the recent significant advances in computer vision, visual fire detection methods have been developed and integrated into building surveillance systems. Overfitting and accuracy challenges remain in fire detection when training datasets are limited. In this work, we tackle these challenges by developing a deep convolutional generative adversarial network (DCGAN) for highly accurate visual fire detection when training images are limited. Our model addresses three types of errors in visual fire detection with small training datasets: model overfitting, fire probability overestimation, and fire probability underestimation. The DCGAN includes a generator of fake fire images for self-supervised learning (SSL) and a discriminator for image classification. We designed computational experiments with high-quality datasets to test and validate our model against other supervised learning approaches. We also benchmarked the performance of the DCGAN against a best-in-class deep visual fire detection model. The results show that our model significantly outperforms other fire detection models on all performance metrics when trained with the same small dataset. The results demonstrate that the DCGAN effectively mitigates the three types of error when the training dataset is limited.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3047764</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8498-3483</orcidid><orcidid>https://orcid.org/0000-0001-7590-9399</orcidid><orcidid>https://orcid.org/0000-0002-1115-7383</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021-01, Vol.9, p.3936-3946
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9309261
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Building automation
Computational modeling
Computer architecture
Computer vision
Critical components
Datasets
Deep convolutional generative adversarial network
Fire detection
Gallium nitride
Generative adversarial networks
Generators
Image classification
Performance measurement
self-supervised learning
Supervised learning
Surveillance systems
Training
visual fire detection
Visualization
title Tackling Small Data Challenges in Visual Fire Detection: A Deep Convolutional Generative Adversarial Network Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tackling%20Small%20Data%20Challenges%20in%20Visual%20Fire%20Detection:%20A%20Deep%20Convolutional%20Generative%20Adversarial%20Network%20Approach&rft.jtitle=IEEE%20access&rft.au=Xu,%20Zhaoyi&rft.date=2021-01-01&rft.volume=9&rft.spage=3936&rft.epage=3946&rft.pages=3936-3946&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3047764&rft_dat=%3Cproquest_ieee_%3E2477251464%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477251464&rft_id=info:pmid/&rft_ieee_id=9309261&rft_doaj_id=oai_doaj_org_article_49cfe9e1d8e64ab5986a12d7e8328c60&rfr_iscdi=true