Model-Free Reinforcement Learning by Embedding an Auxiliary System for Optimal Control of Nonlinear Systems

In this article, a novel integral reinforcement learning (IRL) algorithm is proposed to solve the optimal control problem for continuous-time nonlinear systems with unknown dynamics. The main challenging issue in learning is how to reject the oscillation caused by the externally added probing noise....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2022-04, Vol.33 (4), p.1520-1534
Hauptverfasser: Xu, Zhenhui, Shen, Tielong, Cheng, Daizhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1534
container_issue 4
container_start_page 1520
container_title IEEE transaction on neural networks and learning systems
container_volume 33
creator Xu, Zhenhui
Shen, Tielong
Cheng, Daizhan
description In this article, a novel integral reinforcement learning (IRL) algorithm is proposed to solve the optimal control problem for continuous-time nonlinear systems with unknown dynamics. The main challenging issue in learning is how to reject the oscillation caused by the externally added probing noise. This article challenges the issue by embedding an auxiliary trajectory that is designed as an exciting signal to learn the optimal solution. First, the auxiliary trajectory is used to decompose the state trajectory of the controlled system. Then, by using the decoupled trajectories, a model-free policy iteration (PI) algorithm is developed, where the policy evaluation step and the policy improvement step are alternated until convergence to the optimal solution. It is noted that an appropriate external input is introduced at the policy improvement step to eliminate the requirement of the input-to-state dynamics. Finally, the algorithm is implemented on the actor-critic structure. The output weights of the critic neural network (NN) and the actor NN are updated sequentially by the least-squares methods. The convergence of the algorithm and the stability of the closed-loop system are guaranteed. Two examples are given to show the effectiveness of the proposed algorithm.
doi_str_mv 10.1109/TNNLS.2020.3042589
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9301237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9301237</ieee_id><sourcerecordid>2647426887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-436a78c27020854af0f213f59a6dcc2fd43c1f1b9f376c3cdc936f12e6ed284b3</originalsourceid><addsrcrecordid>eNpdkUGLFDEQhYMo7rLuH1CQgBcvPSaVdDp9XIZdFcZZcFfwFtLpivTanYxJNzj_3owzzsFcKqG-90jVI-Q1ZyvOWfvhcbvdPKyAAVsJJqHW7TNyCVxBBULr5-d78_2CXOf8xMpRrFayfUkuhBCykVxdkp9fYo9jdZcQ6Vccgo_J4YRhphu0KQzhB-329HbqsO8PDxvozfJ7GAeb9vRhn2ecaNHQ-908THak6xjmFEcaPd3GMA6huJy4_Iq88HbMeH2qV-Tb3e3j-lO1uf_4eX2zqZyo-VxJoWyjHTRlNl1L65kHLnzdWtU7B76XwnHPu9aLRjnhetcK5Tmgwh607MQVeX_03aX4a8E8m2nIDsfRBoxLNiAb4FxoUAV99x_6FJcUyu8MqLIiUFo3hYIj5VLMOaE3u1SmTXvDmTmkYf6mYQ5pmFMaRfT2ZL10E_Znyb_dF-DNERgQ8dxuBeMlNfEH3_WOGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647426887</pqid></control><display><type>article</type><title>Model-Free Reinforcement Learning by Embedding an Auxiliary System for Optimal Control of Nonlinear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Zhenhui ; Shen, Tielong ; Cheng, Daizhan</creator><creatorcontrib>Xu, Zhenhui ; Shen, Tielong ; Cheng, Daizhan</creatorcontrib><description>In this article, a novel integral reinforcement learning (IRL) algorithm is proposed to solve the optimal control problem for continuous-time nonlinear systems with unknown dynamics. The main challenging issue in learning is how to reject the oscillation caused by the externally added probing noise. This article challenges the issue by embedding an auxiliary trajectory that is designed as an exciting signal to learn the optimal solution. First, the auxiliary trajectory is used to decompose the state trajectory of the controlled system. Then, by using the decoupled trajectories, a model-free policy iteration (PI) algorithm is developed, where the policy evaluation step and the policy improvement step are alternated until convergence to the optimal solution. It is noted that an appropriate external input is introduced at the policy improvement step to eliminate the requirement of the input-to-state dynamics. Finally, the algorithm is implemented on the actor-critic structure. The output weights of the critic neural network (NN) and the actor NN are updated sequentially by the least-squares methods. The convergence of the algorithm and the stability of the closed-loop system are guaranteed. Two examples are given to show the effectiveness of the proposed algorithm.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2020.3042589</identifier><identifier>PMID: 33347416</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Approximate optimal control design ; Artificial neural networks ; auxiliary trajectory ; completely model-free ; Control systems ; Convergence ; Dynamical systems ; Embedding ; Feedback control ; Heuristic algorithms ; integral reinforcement learning (IRL) ; Iterative methods ; Learning ; Machine learning ; Mathematical model ; Neural networks ; Nonlinear control ; Nonlinear systems ; Optimal control ; Reinforcement ; System dynamics ; Trajectory ; Trajectory control</subject><ispartof>IEEE transaction on neural networks and learning systems, 2022-04, Vol.33 (4), p.1520-1534</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-436a78c27020854af0f213f59a6dcc2fd43c1f1b9f376c3cdc936f12e6ed284b3</citedby><cites>FETCH-LOGICAL-c351t-436a78c27020854af0f213f59a6dcc2fd43c1f1b9f376c3cdc936f12e6ed284b3</cites><orcidid>0000-0001-5088-3209 ; 0000-0003-1378-6164 ; 0000-0002-2183-9978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9301237$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9301237$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33347416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Zhenhui</creatorcontrib><creatorcontrib>Shen, Tielong</creatorcontrib><creatorcontrib>Cheng, Daizhan</creatorcontrib><title>Model-Free Reinforcement Learning by Embedding an Auxiliary System for Optimal Control of Nonlinear Systems</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this article, a novel integral reinforcement learning (IRL) algorithm is proposed to solve the optimal control problem for continuous-time nonlinear systems with unknown dynamics. The main challenging issue in learning is how to reject the oscillation caused by the externally added probing noise. This article challenges the issue by embedding an auxiliary trajectory that is designed as an exciting signal to learn the optimal solution. First, the auxiliary trajectory is used to decompose the state trajectory of the controlled system. Then, by using the decoupled trajectories, a model-free policy iteration (PI) algorithm is developed, where the policy evaluation step and the policy improvement step are alternated until convergence to the optimal solution. It is noted that an appropriate external input is introduced at the policy improvement step to eliminate the requirement of the input-to-state dynamics. Finally, the algorithm is implemented on the actor-critic structure. The output weights of the critic neural network (NN) and the actor NN are updated sequentially by the least-squares methods. The convergence of the algorithm and the stability of the closed-loop system are guaranteed. Two examples are given to show the effectiveness of the proposed algorithm.</description><subject>Algorithms</subject><subject>Approximate optimal control design</subject><subject>Artificial neural networks</subject><subject>auxiliary trajectory</subject><subject>completely model-free</subject><subject>Control systems</subject><subject>Convergence</subject><subject>Dynamical systems</subject><subject>Embedding</subject><subject>Feedback control</subject><subject>Heuristic algorithms</subject><subject>integral reinforcement learning (IRL)</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Reinforcement</subject><subject>System dynamics</subject><subject>Trajectory</subject><subject>Trajectory control</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUGLFDEQhYMo7rLuH1CQgBcvPSaVdDp9XIZdFcZZcFfwFtLpivTanYxJNzj_3owzzsFcKqG-90jVI-Q1ZyvOWfvhcbvdPKyAAVsJJqHW7TNyCVxBBULr5-d78_2CXOf8xMpRrFayfUkuhBCykVxdkp9fYo9jdZcQ6Vccgo_J4YRhphu0KQzhB-329HbqsO8PDxvozfJ7GAeb9vRhn2ecaNHQ-908THak6xjmFEcaPd3GMA6huJy4_Iq88HbMeH2qV-Tb3e3j-lO1uf_4eX2zqZyo-VxJoWyjHTRlNl1L65kHLnzdWtU7B76XwnHPu9aLRjnhetcK5Tmgwh607MQVeX_03aX4a8E8m2nIDsfRBoxLNiAb4FxoUAV99x_6FJcUyu8MqLIiUFo3hYIj5VLMOaE3u1SmTXvDmTmkYf6mYQ5pmFMaRfT2ZL10E_Znyb_dF-DNERgQ8dxuBeMlNfEH3_WOGw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Xu, Zhenhui</creator><creator>Shen, Tielong</creator><creator>Cheng, Daizhan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5088-3209</orcidid><orcidid>https://orcid.org/0000-0003-1378-6164</orcidid><orcidid>https://orcid.org/0000-0002-2183-9978</orcidid></search><sort><creationdate>20220401</creationdate><title>Model-Free Reinforcement Learning by Embedding an Auxiliary System for Optimal Control of Nonlinear Systems</title><author>Xu, Zhenhui ; Shen, Tielong ; Cheng, Daizhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-436a78c27020854af0f213f59a6dcc2fd43c1f1b9f376c3cdc936f12e6ed284b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximate optimal control design</topic><topic>Artificial neural networks</topic><topic>auxiliary trajectory</topic><topic>completely model-free</topic><topic>Control systems</topic><topic>Convergence</topic><topic>Dynamical systems</topic><topic>Embedding</topic><topic>Feedback control</topic><topic>Heuristic algorithms</topic><topic>integral reinforcement learning (IRL)</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Reinforcement</topic><topic>System dynamics</topic><topic>Trajectory</topic><topic>Trajectory control</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhenhui</creatorcontrib><creatorcontrib>Shen, Tielong</creatorcontrib><creatorcontrib>Cheng, Daizhan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Zhenhui</au><au>Shen, Tielong</au><au>Cheng, Daizhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Free Reinforcement Learning by Embedding an Auxiliary System for Optimal Control of Nonlinear Systems</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>33</volume><issue>4</issue><spage>1520</spage><epage>1534</epage><pages>1520-1534</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this article, a novel integral reinforcement learning (IRL) algorithm is proposed to solve the optimal control problem for continuous-time nonlinear systems with unknown dynamics. The main challenging issue in learning is how to reject the oscillation caused by the externally added probing noise. This article challenges the issue by embedding an auxiliary trajectory that is designed as an exciting signal to learn the optimal solution. First, the auxiliary trajectory is used to decompose the state trajectory of the controlled system. Then, by using the decoupled trajectories, a model-free policy iteration (PI) algorithm is developed, where the policy evaluation step and the policy improvement step are alternated until convergence to the optimal solution. It is noted that an appropriate external input is introduced at the policy improvement step to eliminate the requirement of the input-to-state dynamics. Finally, the algorithm is implemented on the actor-critic structure. The output weights of the critic neural network (NN) and the actor NN are updated sequentially by the least-squares methods. The convergence of the algorithm and the stability of the closed-loop system are guaranteed. Two examples are given to show the effectiveness of the proposed algorithm.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33347416</pmid><doi>10.1109/TNNLS.2020.3042589</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5088-3209</orcidid><orcidid>https://orcid.org/0000-0003-1378-6164</orcidid><orcidid>https://orcid.org/0000-0002-2183-9978</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2022-04, Vol.33 (4), p.1520-1534
issn 2162-237X
2162-2388
language eng
recordid cdi_ieee_primary_9301237
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximate optimal control design
Artificial neural networks
auxiliary trajectory
completely model-free
Control systems
Convergence
Dynamical systems
Embedding
Feedback control
Heuristic algorithms
integral reinforcement learning (IRL)
Iterative methods
Learning
Machine learning
Mathematical model
Neural networks
Nonlinear control
Nonlinear systems
Optimal control
Reinforcement
System dynamics
Trajectory
Trajectory control
title Model-Free Reinforcement Learning by Embedding an Auxiliary System for Optimal Control of Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Free%20Reinforcement%20Learning%20by%20Embedding%20an%20Auxiliary%20System%20for%20Optimal%20Control%20of%20Nonlinear%20Systems&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Xu,%20Zhenhui&rft.date=2022-04-01&rft.volume=33&rft.issue=4&rft.spage=1520&rft.epage=1534&rft.pages=1520-1534&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2020.3042589&rft_dat=%3Cproquest_RIE%3E2647426887%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647426887&rft_id=info:pmid/33347416&rft_ieee_id=9301237&rfr_iscdi=true