Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators
Control barrier functions (CBFs) are a powerful tool to guarantee safety of autonomous systems, yet they rely on the computation of control invariant sets, which is notoriously difficult. A backup strategy employs an implicit control invariant set computed by forward integrating the system dynamics....
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2021-12, Vol.5 (6), p.2012-2017 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2017 |
---|---|
container_issue | 6 |
container_start_page | 2012 |
container_title | IEEE control systems letters |
container_volume | 5 |
creator | Folkestad, Carl Chen, Yuxiao Ames, Aaron D. Burdick, Joel W. |
description | Control barrier functions (CBFs) are a powerful tool to guarantee safety of autonomous systems, yet they rely on the computation of control invariant sets, which is notoriously difficult. A backup strategy employs an implicit control invariant set computed by forward integrating the system dynamics. However, this integration is prohibitively expensive for high dimensional systems, and inaccurate in the presence of unmodelled dynamics. We propose to learn discrete-time Koopman operators of the closed-loop dynamics under a backup strategy. This approach replaces forward integration by a simple matrix multiplication, which can mostly be computed offline. We also derive an error bound on the unmodeled dynamics in order to robustify the CBF controller. Our approach extends to multi-agent systems, and we demonstrate the method on collision avoidance for wheeled robots and quadrotors. |
doi_str_mv | 10.1109/LCSYS.2020.3046159 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_9300218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9300218</ieee_id><sourcerecordid>10_1109_LCSYS_2020_3046159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-33d8583816cb3fda017c35e20eb2acb9cd4152fe8bb30bf456bf13eb221bcc0a3</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWGpfQC95ga0zyW676023VsVCD6uIpyVJExtpk5JEYX16W1vF0wwzfD_8HyHnCENEqC5ndfPaDBkwGHLIR1hUR6TH8nGRYV6Mjv_tp2QQ4zsAYMnGwKoekRORRDYJ9lM72gijU5fVwSarxIrW3qXgV1e06Vxa6mi_rHv7vdIbEYLVgU4_nErWu0hfbFrSR-83a-HofKODSD7EM3JixCrqwWH2yfP09qm-z2bzu4f6epYpjpgyzhdlUfISR0pysxCAY8ULzUBLJpSs1CLHghldSslBmm0baZBvnwylUiB4n7B9rgo-xqBNuwl2LULXIrQ7Ue2PqHYnqj2I2kIXe8hqrf-AigMwLPk3T_tmpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators</title><source>IEEE Electronic Library (IEL)</source><creator>Folkestad, Carl ; Chen, Yuxiao ; Ames, Aaron D. ; Burdick, Joel W.</creator><creatorcontrib>Folkestad, Carl ; Chen, Yuxiao ; Ames, Aaron D. ; Burdick, Joel W.</creatorcontrib><description>Control barrier functions (CBFs) are a powerful tool to guarantee safety of autonomous systems, yet they rely on the computation of control invariant sets, which is notoriously difficult. A backup strategy employs an implicit control invariant set computed by forward integrating the system dynamics. However, this integration is prohibitively expensive for high dimensional systems, and inaccurate in the presence of unmodelled dynamics. We propose to learn discrete-time Koopman operators of the closed-loop dynamics under a backup strategy. This approach replaces forward integration by a simple matrix multiplication, which can mostly be computed offline. We also derive an error bound on the unmodeled dynamics in order to robustify the CBF controller. Our approach extends to multi-agent systems, and we demonstrate the method on collision avoidance for wheeled robots and quadrotors.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2020.3046159</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collision avoidance ; computational methods ; Computational modeling ; Data models ; Dictionaries ; Robotics ; Safety ; Sensitivity ; supervisory control ; Trajectory</subject><ispartof>IEEE control systems letters, 2021-12, Vol.5 (6), p.2012-2017</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-33d8583816cb3fda017c35e20eb2acb9cd4152fe8bb30bf456bf13eb221bcc0a3</citedby><cites>FETCH-LOGICAL-c311t-33d8583816cb3fda017c35e20eb2acb9cd4152fe8bb30bf456bf13eb221bcc0a3</cites><orcidid>0000-0002-3091-540X ; 0000-0002-3436-8247 ; 0000-0003-0848-3177 ; 0000-0001-5276-7156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9300218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9300218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Folkestad, Carl</creatorcontrib><creatorcontrib>Chen, Yuxiao</creatorcontrib><creatorcontrib>Ames, Aaron D.</creatorcontrib><creatorcontrib>Burdick, Joel W.</creatorcontrib><title>Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>Control barrier functions (CBFs) are a powerful tool to guarantee safety of autonomous systems, yet they rely on the computation of control invariant sets, which is notoriously difficult. A backup strategy employs an implicit control invariant set computed by forward integrating the system dynamics. However, this integration is prohibitively expensive for high dimensional systems, and inaccurate in the presence of unmodelled dynamics. We propose to learn discrete-time Koopman operators of the closed-loop dynamics under a backup strategy. This approach replaces forward integration by a simple matrix multiplication, which can mostly be computed offline. We also derive an error bound on the unmodeled dynamics in order to robustify the CBF controller. Our approach extends to multi-agent systems, and we demonstrate the method on collision avoidance for wheeled robots and quadrotors.</description><subject>Collision avoidance</subject><subject>computational methods</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Dictionaries</subject><subject>Robotics</subject><subject>Safety</subject><subject>Sensitivity</subject><subject>supervisory control</subject><subject>Trajectory</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWGpfQC95ga0zyW676023VsVCD6uIpyVJExtpk5JEYX16W1vF0wwzfD_8HyHnCENEqC5ndfPaDBkwGHLIR1hUR6TH8nGRYV6Mjv_tp2QQ4zsAYMnGwKoekRORRDYJ9lM72gijU5fVwSarxIrW3qXgV1e06Vxa6mi_rHv7vdIbEYLVgU4_nErWu0hfbFrSR-83a-HofKODSD7EM3JixCrqwWH2yfP09qm-z2bzu4f6epYpjpgyzhdlUfISR0pysxCAY8ULzUBLJpSs1CLHghldSslBmm0baZBvnwylUiB4n7B9rgo-xqBNuwl2LULXIrQ7Ue2PqHYnqj2I2kIXe8hqrf-AigMwLPk3T_tmpQ</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Folkestad, Carl</creator><creator>Chen, Yuxiao</creator><creator>Ames, Aaron D.</creator><creator>Burdick, Joel W.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3091-540X</orcidid><orcidid>https://orcid.org/0000-0002-3436-8247</orcidid><orcidid>https://orcid.org/0000-0003-0848-3177</orcidid><orcidid>https://orcid.org/0000-0001-5276-7156</orcidid></search><sort><creationdate>202112</creationdate><title>Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators</title><author>Folkestad, Carl ; Chen, Yuxiao ; Ames, Aaron D. ; Burdick, Joel W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-33d8583816cb3fda017c35e20eb2acb9cd4152fe8bb30bf456bf13eb221bcc0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Collision avoidance</topic><topic>computational methods</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Dictionaries</topic><topic>Robotics</topic><topic>Safety</topic><topic>Sensitivity</topic><topic>supervisory control</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Folkestad, Carl</creatorcontrib><creatorcontrib>Chen, Yuxiao</creatorcontrib><creatorcontrib>Ames, Aaron D.</creatorcontrib><creatorcontrib>Burdick, Joel W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Folkestad, Carl</au><au>Chen, Yuxiao</au><au>Ames, Aaron D.</au><au>Burdick, Joel W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2021-12</date><risdate>2021</risdate><volume>5</volume><issue>6</issue><spage>2012</spage><epage>2017</epage><pages>2012-2017</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>Control barrier functions (CBFs) are a powerful tool to guarantee safety of autonomous systems, yet they rely on the computation of control invariant sets, which is notoriously difficult. A backup strategy employs an implicit control invariant set computed by forward integrating the system dynamics. However, this integration is prohibitively expensive for high dimensional systems, and inaccurate in the presence of unmodelled dynamics. We propose to learn discrete-time Koopman operators of the closed-loop dynamics under a backup strategy. This approach replaces forward integration by a simple matrix multiplication, which can mostly be computed offline. We also derive an error bound on the unmodeled dynamics in order to robustify the CBF controller. Our approach extends to multi-agent systems, and we demonstrate the method on collision avoidance for wheeled robots and quadrotors.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2020.3046159</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3091-540X</orcidid><orcidid>https://orcid.org/0000-0002-3436-8247</orcidid><orcidid>https://orcid.org/0000-0003-0848-3177</orcidid><orcidid>https://orcid.org/0000-0001-5276-7156</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1456 |
ispartof | IEEE control systems letters, 2021-12, Vol.5 (6), p.2012-2017 |
issn | 2475-1456 2475-1456 |
language | eng |
recordid | cdi_ieee_primary_9300218 |
source | IEEE Electronic Library (IEL) |
subjects | Collision avoidance computational methods Computational modeling Data models Dictionaries Robotics Safety Sensitivity supervisory control Trajectory |
title | Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Safety-Critical%20Control:%20Synthesizing%20Control%20Barrier%20Functions%20With%20Koopman%20Operators&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Folkestad,%20Carl&rft.date=2021-12&rft.volume=5&rft.issue=6&rft.spage=2012&rft.epage=2017&rft.pages=2012-2017&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2020.3046159&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2020_3046159%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9300218&rfr_iscdi=true |