Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators

Control barrier functions (CBFs) are a powerful tool to guarantee safety of autonomous systems, yet they rely on the computation of control invariant sets, which is notoriously difficult. A backup strategy employs an implicit control invariant set computed by forward integrating the system dynamics....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2021-12, Vol.5 (6), p.2012-2017
Hauptverfasser: Folkestad, Carl, Chen, Yuxiao, Ames, Aaron D., Burdick, Joel W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2017
container_issue 6
container_start_page 2012
container_title IEEE control systems letters
container_volume 5
creator Folkestad, Carl
Chen, Yuxiao
Ames, Aaron D.
Burdick, Joel W.
description Control barrier functions (CBFs) are a powerful tool to guarantee safety of autonomous systems, yet they rely on the computation of control invariant sets, which is notoriously difficult. A backup strategy employs an implicit control invariant set computed by forward integrating the system dynamics. However, this integration is prohibitively expensive for high dimensional systems, and inaccurate in the presence of unmodelled dynamics. We propose to learn discrete-time Koopman operators of the closed-loop dynamics under a backup strategy. This approach replaces forward integration by a simple matrix multiplication, which can mostly be computed offline. We also derive an error bound on the unmodeled dynamics in order to robustify the CBF controller. Our approach extends to multi-agent systems, and we demonstrate the method on collision avoidance for wheeled robots and quadrotors.
doi_str_mv 10.1109/LCSYS.2020.3046159
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_9300218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9300218</ieee_id><sourcerecordid>10_1109_LCSYS_2020_3046159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-33d8583816cb3fda017c35e20eb2acb9cd4152fe8bb30bf456bf13eb221bcc0a3</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWGpfQC95ga0zyW676023VsVCD6uIpyVJExtpk5JEYX16W1vF0wwzfD_8HyHnCENEqC5ndfPaDBkwGHLIR1hUR6TH8nGRYV6Mjv_tp2QQ4zsAYMnGwKoekRORRDYJ9lM72gijU5fVwSarxIrW3qXgV1e06Vxa6mi_rHv7vdIbEYLVgU4_nErWu0hfbFrSR-83a-HofKODSD7EM3JixCrqwWH2yfP09qm-z2bzu4f6epYpjpgyzhdlUfISR0pysxCAY8ULzUBLJpSs1CLHghldSslBmm0baZBvnwylUiB4n7B9rgo-xqBNuwl2LULXIrQ7Ue2PqHYnqj2I2kIXe8hqrf-AigMwLPk3T_tmpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators</title><source>IEEE Electronic Library (IEL)</source><creator>Folkestad, Carl ; Chen, Yuxiao ; Ames, Aaron D. ; Burdick, Joel W.</creator><creatorcontrib>Folkestad, Carl ; Chen, Yuxiao ; Ames, Aaron D. ; Burdick, Joel W.</creatorcontrib><description>Control barrier functions (CBFs) are a powerful tool to guarantee safety of autonomous systems, yet they rely on the computation of control invariant sets, which is notoriously difficult. A backup strategy employs an implicit control invariant set computed by forward integrating the system dynamics. However, this integration is prohibitively expensive for high dimensional systems, and inaccurate in the presence of unmodelled dynamics. We propose to learn discrete-time Koopman operators of the closed-loop dynamics under a backup strategy. This approach replaces forward integration by a simple matrix multiplication, which can mostly be computed offline. We also derive an error bound on the unmodeled dynamics in order to robustify the CBF controller. Our approach extends to multi-agent systems, and we demonstrate the method on collision avoidance for wheeled robots and quadrotors.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2020.3046159</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collision avoidance ; computational methods ; Computational modeling ; Data models ; Dictionaries ; Robotics ; Safety ; Sensitivity ; supervisory control ; Trajectory</subject><ispartof>IEEE control systems letters, 2021-12, Vol.5 (6), p.2012-2017</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-33d8583816cb3fda017c35e20eb2acb9cd4152fe8bb30bf456bf13eb221bcc0a3</citedby><cites>FETCH-LOGICAL-c311t-33d8583816cb3fda017c35e20eb2acb9cd4152fe8bb30bf456bf13eb221bcc0a3</cites><orcidid>0000-0002-3091-540X ; 0000-0002-3436-8247 ; 0000-0003-0848-3177 ; 0000-0001-5276-7156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9300218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9300218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Folkestad, Carl</creatorcontrib><creatorcontrib>Chen, Yuxiao</creatorcontrib><creatorcontrib>Ames, Aaron D.</creatorcontrib><creatorcontrib>Burdick, Joel W.</creatorcontrib><title>Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>Control barrier functions (CBFs) are a powerful tool to guarantee safety of autonomous systems, yet they rely on the computation of control invariant sets, which is notoriously difficult. A backup strategy employs an implicit control invariant set computed by forward integrating the system dynamics. However, this integration is prohibitively expensive for high dimensional systems, and inaccurate in the presence of unmodelled dynamics. We propose to learn discrete-time Koopman operators of the closed-loop dynamics under a backup strategy. This approach replaces forward integration by a simple matrix multiplication, which can mostly be computed offline. We also derive an error bound on the unmodeled dynamics in order to robustify the CBF controller. Our approach extends to multi-agent systems, and we demonstrate the method on collision avoidance for wheeled robots and quadrotors.</description><subject>Collision avoidance</subject><subject>computational methods</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Dictionaries</subject><subject>Robotics</subject><subject>Safety</subject><subject>Sensitivity</subject><subject>supervisory control</subject><subject>Trajectory</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWGpfQC95ga0zyW676023VsVCD6uIpyVJExtpk5JEYX16W1vF0wwzfD_8HyHnCENEqC5ndfPaDBkwGHLIR1hUR6TH8nGRYV6Mjv_tp2QQ4zsAYMnGwKoekRORRDYJ9lM72gijU5fVwSarxIrW3qXgV1e06Vxa6mi_rHv7vdIbEYLVgU4_nErWu0hfbFrSR-83a-HofKODSD7EM3JixCrqwWH2yfP09qm-z2bzu4f6epYpjpgyzhdlUfISR0pysxCAY8ULzUBLJpSs1CLHghldSslBmm0baZBvnwylUiB4n7B9rgo-xqBNuwl2LULXIrQ7Ue2PqHYnqj2I2kIXe8hqrf-AigMwLPk3T_tmpQ</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Folkestad, Carl</creator><creator>Chen, Yuxiao</creator><creator>Ames, Aaron D.</creator><creator>Burdick, Joel W.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3091-540X</orcidid><orcidid>https://orcid.org/0000-0002-3436-8247</orcidid><orcidid>https://orcid.org/0000-0003-0848-3177</orcidid><orcidid>https://orcid.org/0000-0001-5276-7156</orcidid></search><sort><creationdate>202112</creationdate><title>Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators</title><author>Folkestad, Carl ; Chen, Yuxiao ; Ames, Aaron D. ; Burdick, Joel W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-33d8583816cb3fda017c35e20eb2acb9cd4152fe8bb30bf456bf13eb221bcc0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Collision avoidance</topic><topic>computational methods</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Dictionaries</topic><topic>Robotics</topic><topic>Safety</topic><topic>Sensitivity</topic><topic>supervisory control</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Folkestad, Carl</creatorcontrib><creatorcontrib>Chen, Yuxiao</creatorcontrib><creatorcontrib>Ames, Aaron D.</creatorcontrib><creatorcontrib>Burdick, Joel W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Folkestad, Carl</au><au>Chen, Yuxiao</au><au>Ames, Aaron D.</au><au>Burdick, Joel W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2021-12</date><risdate>2021</risdate><volume>5</volume><issue>6</issue><spage>2012</spage><epage>2017</epage><pages>2012-2017</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>Control barrier functions (CBFs) are a powerful tool to guarantee safety of autonomous systems, yet they rely on the computation of control invariant sets, which is notoriously difficult. A backup strategy employs an implicit control invariant set computed by forward integrating the system dynamics. However, this integration is prohibitively expensive for high dimensional systems, and inaccurate in the presence of unmodelled dynamics. We propose to learn discrete-time Koopman operators of the closed-loop dynamics under a backup strategy. This approach replaces forward integration by a simple matrix multiplication, which can mostly be computed offline. We also derive an error bound on the unmodeled dynamics in order to robustify the CBF controller. Our approach extends to multi-agent systems, and we demonstrate the method on collision avoidance for wheeled robots and quadrotors.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2020.3046159</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3091-540X</orcidid><orcidid>https://orcid.org/0000-0002-3436-8247</orcidid><orcidid>https://orcid.org/0000-0003-0848-3177</orcidid><orcidid>https://orcid.org/0000-0001-5276-7156</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1456
ispartof IEEE control systems letters, 2021-12, Vol.5 (6), p.2012-2017
issn 2475-1456
2475-1456
language eng
recordid cdi_ieee_primary_9300218
source IEEE Electronic Library (IEL)
subjects Collision avoidance
computational methods
Computational modeling
Data models
Dictionaries
Robotics
Safety
Sensitivity
supervisory control
Trajectory
title Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Safety-Critical%20Control:%20Synthesizing%20Control%20Barrier%20Functions%20With%20Koopman%20Operators&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Folkestad,%20Carl&rft.date=2021-12&rft.volume=5&rft.issue=6&rft.spage=2012&rft.epage=2017&rft.pages=2012-2017&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2020.3046159&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2020_3046159%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9300218&rfr_iscdi=true