Domain Adaptation of Binary Sensors in Smart Environments Through Activity Alignment

Activity Recognition is an active research topic focused on detecting human actions and behaviours in smart environments. In most cases, the use of data-driven models aim to relate data from sensors to an activity through a model developed by a supervised approach. In this work, we focus on the goal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.228804-228817
Hauptverfasser: Polo-Rodriguez, Aurora, Cruciani, Federico, Nugent, Chris D., Medina-Quero, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228817
container_issue
container_start_page 228804
container_title IEEE access
container_volume 8
creator Polo-Rodriguez, Aurora
Cruciani, Federico
Nugent, Chris D.
Medina-Quero, Javier
description Activity Recognition is an active research topic focused on detecting human actions and behaviours in smart environments. In most cases, the use of data-driven models aim to relate data from sensors to an activity through a model developed by a supervised approach. In this work, we focus on the goal of domain adaptation between smart environments, which has required a novel approach to relate the concepts of domain adaptation using binary sensor and learning from daily imbalanced data. In this work, the sensor activation from a given context is translated to a different one, based on the temporal alignment from human activities. The domain adaptation of binary sensor is accomplished through a three step procedure: i) clustering of sensor activation, ii) activity based alignment of sensor data between the two environments, iii) an ensemble of classifiers used to mine a mapping function, translating sensor data between the two environments. The proposed method was evaluated over a publicly available dataset, and obtained preliminary results which were encouraging with an F1-Score of 87%.
doi_str_mv 10.1109/ACCESS.2020.3046181
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9300200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9300200</ieee_id><doaj_id>oai_doaj_org_article_474dc7b68522462d802c86a8ef42c0a7</doaj_id><sourcerecordid>2474859335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-9ad554845fc4105dae421c04c863da056cb2fe00994656a510d4694b975279063</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaKg1P6CXgKeWyefmxzXWj9A8NB6Dmk2W1PaTU22Qv-90RVxLjPMzHvzmIfQhMCMENC39Xy-WC5nFCjMGHBJFDlDV5RIPWWCyfN_9SUa57yFEqq0RHWFVvdxb0OH68YeetuH2OHY4rvQ2XTCS9_lmDIu8-Xeph4vus-QYrf3XZ_x6j3F4-Yd164Pn6E_4XoXNj-za3TR2l324988Qm8Pi9X8afry-vg8r1-mjleqn2rbCMEVF63jBERjPafEAXdKssaCkG5NWw-gNZdCWkGg4VLzta4ErTRINkLPA28T7dYcUigiTybaYH4aMW1MUR3czhte8cZVa6kEpVzSRgEtZ6zyLacObFW4bgauQ4ofR597s43H1BX5hhawEpqVD44QG7Zcijkn3_5dJWC-3TCDG-bbDfPrRkFNBlTw3v8hNIOyBOwLvZiD5Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474859335</pqid></control><display><type>article</type><title>Domain Adaptation of Binary Sensors in Smart Environments Through Activity Alignment</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Polo-Rodriguez, Aurora ; Cruciani, Federico ; Nugent, Chris D. ; Medina-Quero, Javier</creator><creatorcontrib>Polo-Rodriguez, Aurora ; Cruciani, Federico ; Nugent, Chris D. ; Medina-Quero, Javier</creatorcontrib><description>Activity Recognition is an active research topic focused on detecting human actions and behaviours in smart environments. In most cases, the use of data-driven models aim to relate data from sensors to an activity through a model developed by a supervised approach. In this work, we focus on the goal of domain adaptation between smart environments, which has required a novel approach to relate the concepts of domain adaptation using binary sensor and learning from daily imbalanced data. In this work, the sensor activation from a given context is translated to a different one, based on the temporal alignment from human activities. The domain adaptation of binary sensor is accomplished through a three step procedure: i) clustering of sensor activation, ii) activity based alignment of sensor data between the two environments, iii) an ensemble of classifiers used to mine a mapping function, translating sensor data between the two environments. The proposed method was evaluated over a publicly available dataset, and obtained preliminary results which were encouraging with an F1-Score of 87%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3046181</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Activity recognition ; Adaptation ; Adaptation models ; Alignment ; Clustering ; Context modeling ; Data models ; domain adaptation ; Domains ; Intelligent sensors ; Labeling ; Sensor phenomena and characterization ; Sensor translation ; Sensors ; smart environments ; Smart sensors</subject><ispartof>IEEE access, 2020, Vol.8, p.228804-228817</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-9ad554845fc4105dae421c04c863da056cb2fe00994656a510d4694b975279063</citedby><cites>FETCH-LOGICAL-c478t-9ad554845fc4105dae421c04c863da056cb2fe00994656a510d4694b975279063</cites><orcidid>0000-0002-1870-0203 ; 0000-0003-0882-7902 ; 0000-0002-8577-8772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9300200$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Polo-Rodriguez, Aurora</creatorcontrib><creatorcontrib>Cruciani, Federico</creatorcontrib><creatorcontrib>Nugent, Chris D.</creatorcontrib><creatorcontrib>Medina-Quero, Javier</creatorcontrib><title>Domain Adaptation of Binary Sensors in Smart Environments Through Activity Alignment</title><title>IEEE access</title><addtitle>Access</addtitle><description>Activity Recognition is an active research topic focused on detecting human actions and behaviours in smart environments. In most cases, the use of data-driven models aim to relate data from sensors to an activity through a model developed by a supervised approach. In this work, we focus on the goal of domain adaptation between smart environments, which has required a novel approach to relate the concepts of domain adaptation using binary sensor and learning from daily imbalanced data. In this work, the sensor activation from a given context is translated to a different one, based on the temporal alignment from human activities. The domain adaptation of binary sensor is accomplished through a three step procedure: i) clustering of sensor activation, ii) activity based alignment of sensor data between the two environments, iii) an ensemble of classifiers used to mine a mapping function, translating sensor data between the two environments. The proposed method was evaluated over a publicly available dataset, and obtained preliminary results which were encouraging with an F1-Score of 87%.</description><subject>Activity recognition</subject><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Alignment</subject><subject>Clustering</subject><subject>Context modeling</subject><subject>Data models</subject><subject>domain adaptation</subject><subject>Domains</subject><subject>Intelligent sensors</subject><subject>Labeling</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor translation</subject><subject>Sensors</subject><subject>smart environments</subject><subject>Smart sensors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaKg1P6CXgKeWyefmxzXWj9A8NB6Dmk2W1PaTU22Qv-90RVxLjPMzHvzmIfQhMCMENC39Xy-WC5nFCjMGHBJFDlDV5RIPWWCyfN_9SUa57yFEqq0RHWFVvdxb0OH68YeetuH2OHY4rvQ2XTCS9_lmDIu8-Xeph4vus-QYrf3XZ_x6j3F4-Yd164Pn6E_4XoXNj-za3TR2l324988Qm8Pi9X8afry-vg8r1-mjleqn2rbCMEVF63jBERjPafEAXdKssaCkG5NWw-gNZdCWkGg4VLzta4ErTRINkLPA28T7dYcUigiTybaYH4aMW1MUR3czhte8cZVa6kEpVzSRgEtZ6zyLacObFW4bgauQ4ofR597s43H1BX5hhawEpqVD44QG7Zcijkn3_5dJWC-3TCDG-bbDfPrRkFNBlTw3v8hNIOyBOwLvZiD5Q</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Polo-Rodriguez, Aurora</creator><creator>Cruciani, Federico</creator><creator>Nugent, Chris D.</creator><creator>Medina-Quero, Javier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1870-0203</orcidid><orcidid>https://orcid.org/0000-0003-0882-7902</orcidid><orcidid>https://orcid.org/0000-0002-8577-8772</orcidid></search><sort><creationdate>2020</creationdate><title>Domain Adaptation of Binary Sensors in Smart Environments Through Activity Alignment</title><author>Polo-Rodriguez, Aurora ; Cruciani, Federico ; Nugent, Chris D. ; Medina-Quero, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-9ad554845fc4105dae421c04c863da056cb2fe00994656a510d4694b975279063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activity recognition</topic><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Alignment</topic><topic>Clustering</topic><topic>Context modeling</topic><topic>Data models</topic><topic>domain adaptation</topic><topic>Domains</topic><topic>Intelligent sensors</topic><topic>Labeling</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor translation</topic><topic>Sensors</topic><topic>smart environments</topic><topic>Smart sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polo-Rodriguez, Aurora</creatorcontrib><creatorcontrib>Cruciani, Federico</creatorcontrib><creatorcontrib>Nugent, Chris D.</creatorcontrib><creatorcontrib>Medina-Quero, Javier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polo-Rodriguez, Aurora</au><au>Cruciani, Federico</au><au>Nugent, Chris D.</au><au>Medina-Quero, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain Adaptation of Binary Sensors in Smart Environments Through Activity Alignment</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>228804</spage><epage>228817</epage><pages>228804-228817</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Activity Recognition is an active research topic focused on detecting human actions and behaviours in smart environments. In most cases, the use of data-driven models aim to relate data from sensors to an activity through a model developed by a supervised approach. In this work, we focus on the goal of domain adaptation between smart environments, which has required a novel approach to relate the concepts of domain adaptation using binary sensor and learning from daily imbalanced data. In this work, the sensor activation from a given context is translated to a different one, based on the temporal alignment from human activities. The domain adaptation of binary sensor is accomplished through a three step procedure: i) clustering of sensor activation, ii) activity based alignment of sensor data between the two environments, iii) an ensemble of classifiers used to mine a mapping function, translating sensor data between the two environments. The proposed method was evaluated over a publicly available dataset, and obtained preliminary results which were encouraging with an F1-Score of 87%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3046181</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1870-0203</orcidid><orcidid>https://orcid.org/0000-0003-0882-7902</orcidid><orcidid>https://orcid.org/0000-0002-8577-8772</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.228804-228817
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9300200
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Activity recognition
Adaptation
Adaptation models
Alignment
Clustering
Context modeling
Data models
domain adaptation
Domains
Intelligent sensors
Labeling
Sensor phenomena and characterization
Sensor translation
Sensors
smart environments
Smart sensors
title Domain Adaptation of Binary Sensors in Smart Environments Through Activity Alignment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20Adaptation%20of%20Binary%20Sensors%20in%20Smart%20Environments%20Through%20Activity%20Alignment&rft.jtitle=IEEE%20access&rft.au=Polo-Rodriguez,%20Aurora&rft.date=2020&rft.volume=8&rft.spage=228804&rft.epage=228817&rft.pages=228804-228817&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3046181&rft_dat=%3Cproquest_ieee_%3E2474859335%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474859335&rft_id=info:pmid/&rft_ieee_id=9300200&rft_doaj_id=oai_doaj_org_article_474dc7b68522462d802c86a8ef42c0a7&rfr_iscdi=true