Minimization of Cogging Torque in Axial Field Flux Switching Machine Using Arc Shaped Triangular Magnets

Axial flux permanent magnet machine (AFPMM) provides high torque characteristics at low speeds without any mechanical gears. AFPMMs have numerous applications in wind energy, electric cars, and direct drive elevator applications. These machines have low cost and improved power to weight ratio. Howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.227193-227201
Hauptverfasser: Aakif Baig, Mirza, Ikram, Junaid, Iftikhar, Adnan, Bukhari, Syed Sabir Hussain, Khan, Nasrullah, Ro, Jongsuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227201
container_issue
container_start_page 227193
container_title IEEE access
container_volume 8
creator Aakif Baig, Mirza
Ikram, Junaid
Iftikhar, Adnan
Bukhari, Syed Sabir Hussain
Khan, Nasrullah
Ro, Jongsuk
description Axial flux permanent magnet machine (AFPMM) provides high torque characteristics at low speeds without any mechanical gears. AFPMMs have numerous applications in wind energy, electric cars, and direct drive elevator applications. These machines have low cost and improved power to weight ratio. However, single sided AFPM suffers from torque ripples because of its non-sinusoidal back emf, cogging torque, and rotor eccentricity. There are two major components of pulsating torque, namely torque ripples and cogging torque. In PM machine design, the cogging torque is a serious concern because it adds unwanted harmonics to the pulsating torque. Whereas the torque ripples cause noise and vibrations. In order to gain high efficiency, torque ripples should be minimum. The aim of this research is to design "Slotted axial field flux switching permanent magnet machine". Mathematical models are used to design the machine and Finite element method (FEM) has been used to analyze the machine. In addition, Latin hypercube sampling (LHS) has been used to create the samples. Finally, Kriging Method is used for approximating the model and genetic algorithm has been applied to get the optimum machine. The results showed 61.8 % reduction of the cogging torque in the proposed machine model as compared to the conventional one. Moreover, the optimized model further provided 6.15 % reduction in the cogging torque as compared to the proposed one.
doi_str_mv 10.1109/ACCESS.2020.3044922
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9294007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9294007</ieee_id><doaj_id>oai_doaj_org_article_59f7b60902b44958bf2e0eb68f1b072c</doaj_id><sourcerecordid>2474859265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-44a1a3167bf7fca33a71b31f2f39607dd7c3b524a210b997e520ce4caa2b3be3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIoMIXcLHEucWvxPGxiigggTi0nK21Y6euQlycVDy-HodUiL3sQzOzq50suyZ4QQiWt8uquluvFxRTvGCYc0npSXZBSSHnLGfF6b_6PLvq-x1OUaZRLi6y7bPv_Jv_hsGHDgWHqtA0vmvQJsT3g0W-Q8tPDy1aedvWaNUePtH6ww9mO4KeYcwWvfZjt4wGrbewtzXaRA9dc2ghJkzT2aG_zM4ctL29OuZZtlndbaqH-dPL_WO1fJobLsphzjkQYKQQ2glngDEQRDPiqGOywKKuhWE6pxwowVpKYXOKjeUGgGqmLZtlj5NsHWCn9tG_QfxSAbz6HYTYKIiDN61VuXRCF1hiqtPT8lI7arHVRemIxoKapHUzae1jSL_oB7ULh9il6xXlgpe5pEWeUGxCmRj6Plr3t5VgNRqkJoPUaJA6GpRY1xPLW2v_GJJKjrFgP8sSi8A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474859265</pqid></control><display><type>article</type><title>Minimization of Cogging Torque in Axial Field Flux Switching Machine Using Arc Shaped Triangular Magnets</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Aakif Baig, Mirza ; Ikram, Junaid ; Iftikhar, Adnan ; Bukhari, Syed Sabir Hussain ; Khan, Nasrullah ; Ro, Jongsuk</creator><creatorcontrib>Aakif Baig, Mirza ; Ikram, Junaid ; Iftikhar, Adnan ; Bukhari, Syed Sabir Hussain ; Khan, Nasrullah ; Ro, Jongsuk</creatorcontrib><description>Axial flux permanent magnet machine (AFPMM) provides high torque characteristics at low speeds without any mechanical gears. AFPMMs have numerous applications in wind energy, electric cars, and direct drive elevator applications. These machines have low cost and improved power to weight ratio. However, single sided AFPM suffers from torque ripples because of its non-sinusoidal back emf, cogging torque, and rotor eccentricity. There are two major components of pulsating torque, namely torque ripples and cogging torque. In PM machine design, the cogging torque is a serious concern because it adds unwanted harmonics to the pulsating torque. Whereas the torque ripples cause noise and vibrations. In order to gain high efficiency, torque ripples should be minimum. The aim of this research is to design "Slotted axial field flux switching permanent magnet machine". Mathematical models are used to design the machine and Finite element method (FEM) has been used to analyze the machine. In addition, Latin hypercube sampling (LHS) has been used to create the samples. Finally, Kriging Method is used for approximating the model and genetic algorithm has been applied to get the optimum machine. The results showed 61.8 % reduction of the cogging torque in the proposed machine model as compared to the conventional one. Moreover, the optimized model further provided 6.15 % reduction in the cogging torque as compared to the proposed one.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3044922</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Approximation ; Atmospheric modeling ; Axial flux permanent magnet machine ; Axial stress ; Cogging ; cogging torque ; Electric vehicles ; Finite element method ; Flux ; flux switching ; Forging ; Genetic algorithms ; Hypercubes ; Latin hypercube sampling ; Magnetic cores ; Magnetic flux ; Mathematical model ; Mathematical models ; Optimization ; Permanent magnets ; Ripples ; Rotors ; slotted stator ; Switching ; Torque ; Wind power</subject><ispartof>IEEE access, 2020, Vol.8, p.227193-227201</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-44a1a3167bf7fca33a71b31f2f39607dd7c3b524a210b997e520ce4caa2b3be3</citedby><cites>FETCH-LOGICAL-c478t-44a1a3167bf7fca33a71b31f2f39607dd7c3b524a210b997e520ce4caa2b3be3</cites><orcidid>0000-0003-3423-9856 ; 0000-0002-8694-5341 ; 0000-0003-1749-2518 ; 0000-0002-8296-0253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9294007$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Aakif Baig, Mirza</creatorcontrib><creatorcontrib>Ikram, Junaid</creatorcontrib><creatorcontrib>Iftikhar, Adnan</creatorcontrib><creatorcontrib>Bukhari, Syed Sabir Hussain</creatorcontrib><creatorcontrib>Khan, Nasrullah</creatorcontrib><creatorcontrib>Ro, Jongsuk</creatorcontrib><title>Minimization of Cogging Torque in Axial Field Flux Switching Machine Using Arc Shaped Triangular Magnets</title><title>IEEE access</title><addtitle>Access</addtitle><description>Axial flux permanent magnet machine (AFPMM) provides high torque characteristics at low speeds without any mechanical gears. AFPMMs have numerous applications in wind energy, electric cars, and direct drive elevator applications. These machines have low cost and improved power to weight ratio. However, single sided AFPM suffers from torque ripples because of its non-sinusoidal back emf, cogging torque, and rotor eccentricity. There are two major components of pulsating torque, namely torque ripples and cogging torque. In PM machine design, the cogging torque is a serious concern because it adds unwanted harmonics to the pulsating torque. Whereas the torque ripples cause noise and vibrations. In order to gain high efficiency, torque ripples should be minimum. The aim of this research is to design "Slotted axial field flux switching permanent magnet machine". Mathematical models are used to design the machine and Finite element method (FEM) has been used to analyze the machine. In addition, Latin hypercube sampling (LHS) has been used to create the samples. Finally, Kriging Method is used for approximating the model and genetic algorithm has been applied to get the optimum machine. The results showed 61.8 % reduction of the cogging torque in the proposed machine model as compared to the conventional one. Moreover, the optimized model further provided 6.15 % reduction in the cogging torque as compared to the proposed one.</description><subject>Approximation</subject><subject>Atmospheric modeling</subject><subject>Axial flux permanent magnet machine</subject><subject>Axial stress</subject><subject>Cogging</subject><subject>cogging torque</subject><subject>Electric vehicles</subject><subject>Finite element method</subject><subject>Flux</subject><subject>flux switching</subject><subject>Forging</subject><subject>Genetic algorithms</subject><subject>Hypercubes</subject><subject>Latin hypercube sampling</subject><subject>Magnetic cores</subject><subject>Magnetic flux</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Permanent magnets</subject><subject>Ripples</subject><subject>Rotors</subject><subject>slotted stator</subject><subject>Switching</subject><subject>Torque</subject><subject>Wind power</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIoMIXcLHEucWvxPGxiigggTi0nK21Y6euQlycVDy-HodUiL3sQzOzq50suyZ4QQiWt8uquluvFxRTvGCYc0npSXZBSSHnLGfF6b_6PLvq-x1OUaZRLi6y7bPv_Jv_hsGHDgWHqtA0vmvQJsT3g0W-Q8tPDy1aedvWaNUePtH6ww9mO4KeYcwWvfZjt4wGrbewtzXaRA9dc2ghJkzT2aG_zM4ctL29OuZZtlndbaqH-dPL_WO1fJobLsphzjkQYKQQ2glngDEQRDPiqGOywKKuhWE6pxwowVpKYXOKjeUGgGqmLZtlj5NsHWCn9tG_QfxSAbz6HYTYKIiDN61VuXRCF1hiqtPT8lI7arHVRemIxoKapHUzae1jSL_oB7ULh9il6xXlgpe5pEWeUGxCmRj6Plr3t5VgNRqkJoPUaJA6GpRY1xPLW2v_GJJKjrFgP8sSi8A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Aakif Baig, Mirza</creator><creator>Ikram, Junaid</creator><creator>Iftikhar, Adnan</creator><creator>Bukhari, Syed Sabir Hussain</creator><creator>Khan, Nasrullah</creator><creator>Ro, Jongsuk</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3423-9856</orcidid><orcidid>https://orcid.org/0000-0002-8694-5341</orcidid><orcidid>https://orcid.org/0000-0003-1749-2518</orcidid><orcidid>https://orcid.org/0000-0002-8296-0253</orcidid></search><sort><creationdate>2020</creationdate><title>Minimization of Cogging Torque in Axial Field Flux Switching Machine Using Arc Shaped Triangular Magnets</title><author>Aakif Baig, Mirza ; Ikram, Junaid ; Iftikhar, Adnan ; Bukhari, Syed Sabir Hussain ; Khan, Nasrullah ; Ro, Jongsuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-44a1a3167bf7fca33a71b31f2f39607dd7c3b524a210b997e520ce4caa2b3be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Atmospheric modeling</topic><topic>Axial flux permanent magnet machine</topic><topic>Axial stress</topic><topic>Cogging</topic><topic>cogging torque</topic><topic>Electric vehicles</topic><topic>Finite element method</topic><topic>Flux</topic><topic>flux switching</topic><topic>Forging</topic><topic>Genetic algorithms</topic><topic>Hypercubes</topic><topic>Latin hypercube sampling</topic><topic>Magnetic cores</topic><topic>Magnetic flux</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Permanent magnets</topic><topic>Ripples</topic><topic>Rotors</topic><topic>slotted stator</topic><topic>Switching</topic><topic>Torque</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aakif Baig, Mirza</creatorcontrib><creatorcontrib>Ikram, Junaid</creatorcontrib><creatorcontrib>Iftikhar, Adnan</creatorcontrib><creatorcontrib>Bukhari, Syed Sabir Hussain</creatorcontrib><creatorcontrib>Khan, Nasrullah</creatorcontrib><creatorcontrib>Ro, Jongsuk</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aakif Baig, Mirza</au><au>Ikram, Junaid</au><au>Iftikhar, Adnan</au><au>Bukhari, Syed Sabir Hussain</au><au>Khan, Nasrullah</au><au>Ro, Jongsuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimization of Cogging Torque in Axial Field Flux Switching Machine Using Arc Shaped Triangular Magnets</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>227193</spage><epage>227201</epage><pages>227193-227201</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Axial flux permanent magnet machine (AFPMM) provides high torque characteristics at low speeds without any mechanical gears. AFPMMs have numerous applications in wind energy, electric cars, and direct drive elevator applications. These machines have low cost and improved power to weight ratio. However, single sided AFPM suffers from torque ripples because of its non-sinusoidal back emf, cogging torque, and rotor eccentricity. There are two major components of pulsating torque, namely torque ripples and cogging torque. In PM machine design, the cogging torque is a serious concern because it adds unwanted harmonics to the pulsating torque. Whereas the torque ripples cause noise and vibrations. In order to gain high efficiency, torque ripples should be minimum. The aim of this research is to design "Slotted axial field flux switching permanent magnet machine". Mathematical models are used to design the machine and Finite element method (FEM) has been used to analyze the machine. In addition, Latin hypercube sampling (LHS) has been used to create the samples. Finally, Kriging Method is used for approximating the model and genetic algorithm has been applied to get the optimum machine. The results showed 61.8 % reduction of the cogging torque in the proposed machine model as compared to the conventional one. Moreover, the optimized model further provided 6.15 % reduction in the cogging torque as compared to the proposed one.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3044922</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3423-9856</orcidid><orcidid>https://orcid.org/0000-0002-8694-5341</orcidid><orcidid>https://orcid.org/0000-0003-1749-2518</orcidid><orcidid>https://orcid.org/0000-0002-8296-0253</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.227193-227201
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9294007
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Approximation
Atmospheric modeling
Axial flux permanent magnet machine
Axial stress
Cogging
cogging torque
Electric vehicles
Finite element method
Flux
flux switching
Forging
Genetic algorithms
Hypercubes
Latin hypercube sampling
Magnetic cores
Magnetic flux
Mathematical model
Mathematical models
Optimization
Permanent magnets
Ripples
Rotors
slotted stator
Switching
Torque
Wind power
title Minimization of Cogging Torque in Axial Field Flux Switching Machine Using Arc Shaped Triangular Magnets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T09%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimization%20of%20Cogging%20Torque%20in%20Axial%20Field%20Flux%20Switching%20Machine%20Using%20Arc%20Shaped%20Triangular%20Magnets&rft.jtitle=IEEE%20access&rft.au=Aakif%20Baig,%20Mirza&rft.date=2020&rft.volume=8&rft.spage=227193&rft.epage=227201&rft.pages=227193-227201&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3044922&rft_dat=%3Cproquest_ieee_%3E2474859265%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474859265&rft_id=info:pmid/&rft_ieee_id=9294007&rft_doaj_id=oai_doaj_org_article_59f7b60902b44958bf2e0eb68f1b072c&rfr_iscdi=true