Artificial Intelligence Applied to Chest X-Ray Images for the Automatic Detection of COVID-19. A Thoughtful Evaluation Approach
Current standard protocols used in the clinic for diagnosing COVID-19 include molecular or antigen tests, generally complemented by a plain chest X-Ray. The combined analysis aims to reduce the significant number of false negatives of these tests and provide complementary evidence about the presence...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.226811-226827 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current standard protocols used in the clinic for diagnosing COVID-19 include molecular or antigen tests, generally complemented by a plain chest X-Ray. The combined analysis aims to reduce the significant number of false negatives of these tests and provide complementary evidence about the presence and severity of the disease. However, the procedure is not free of errors, and the interpretation of the chest X-Ray is only restricted to radiologists due to its complexity. With the long term goal to provide new evidence for the diagnosis, this paper presents an evaluation of different methods based on a deep neural network. These are the first steps to develop an automatic COVID-19 diagnosis tool using chest X-Ray images to differentiate between controls, pneumonia, or COVID-19 groups. The paper describes the process followed to train a Convolutional Neural Network with a dataset of more than 79, 500 X-Ray images compiled from different sources, including more than 8, 500 COVID-19 examples. Three different experiments following three preprocessing schemes are carried out to evaluate and compare the developed models. The aim is to evaluate how preprocessing the data affects the results and improves its explainability. Likewise, a critical analysis of different variability issues that might compromise the system and its effects is performed. With the employed methodology, a 91.5% classification accuracy is obtained, with an 87.4% average recall for the worst but most explainable experiment, which requires a previous automatic segmentation of the lung region. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.3044858 |