Design and Analysis of a Wideband Staggered Double-Vane Slow-Wave Structure for W-Band Amplifier

This article presents the design and analysis of a staggered double-vane (SDV) slow-wave structure (SWS) for W -band amplifier, with 20-dB gain and a very high bandwidth (~25%). The use of dual Bragg reflector at either end of the interaction structure increases the impedance matching and the radio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2021-01, Vol.49 (1), p.251-257
Hauptverfasser: Stanislaus, Richards Joe, Bera, Anirban, Sharma, Rajendra K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue 1
container_start_page 251
container_title IEEE transactions on plasma science
container_volume 49
creator Stanislaus, Richards Joe
Bera, Anirban
Sharma, Rajendra K.
description This article presents the design and analysis of a staggered double-vane (SDV) slow-wave structure (SWS) for W -band amplifier, with 20-dB gain and a very high bandwidth (~25%). The use of dual Bragg reflector at either end of the interaction structure increases the impedance matching and the radio frequency (RF) coupling efficiency at the input and output ports, thereby reducing the RF leakage at the electron gun and collector ends, from 15% to 25% to less than 0.6%. The attenuator section is simple to fabricate and optimally designed in order to provide an effective isolation (>20 dB) between the input RF signal in the input section and the RF signal reflected from the output section. The dispersion analysis, the transmission analysis of each section, and the beam-wave interactions were simulated using the Dassault system's computer simulation technology (CST) eigenmode solver, time-domain solver, and the particle-in-cell (PIC) solver, respectively. The proposed design of the SDV SWS conclusively provides an enormous bandwidth of ~25 GHz with 20-dB gain for W -band amplifier, when compared to its solid-state counterparts and earlier reported work as per the author's knowledge.
doi_str_mv 10.1109/TPS.2020.3040223
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9292446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9292446</ieee_id><sourcerecordid>2478139606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-906b9fe9ecaf2358a738e78e9a3c14c74c442c574fe2ce44bb5597fa6fd4c56b3</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKfvgi8BnzPz1aZ5nJtfMFDYdI8xTW9GR9fOpFX239u54dM9XM45cH4IXTM6Yozqu8XbfMQppyNBJeVcnKAB00ITLVRyigaUakFExsQ5uohxTSmTCeUD9DmFWK5qbOsCj2tb7WIZceOxxcuygHz_nrd2tYIABZ42XV4B-bA14HnV_JCl_e5VGzrXdgGwbwJekvu_rs22Kn0J4RKdeVtFuDreIXp_fFhMnsns9ellMp4RxzVriaZprj1ocNZzkWRWiQxUBtoKx6RT0knJXaKkB-5AyjxPEq28TX0hXZLmYohuD73b0Hx1EFuzbrrQL4qGS9UP1ylNexc9uFxoYgzgzTaUGxt2hlGz52h6jmbP0Rw59pGbQ6QEgH-75ppLmYpfMY1uFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478139606</pqid></control><display><type>article</type><title>Design and Analysis of a Wideband Staggered Double-Vane Slow-Wave Structure for W-Band Amplifier</title><source>IEEE Electronic Library (IEL)</source><creator>Stanislaus, Richards Joe ; Bera, Anirban ; Sharma, Rajendra K.</creator><creatorcontrib>Stanislaus, Richards Joe ; Bera, Anirban ; Sharma, Rajendra K.</creatorcontrib><description><![CDATA[This article presents the design and analysis of a staggered double-vane (SDV) slow-wave structure (SWS) for <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band amplifier, with 20-dB gain and a very high bandwidth (~25%). The use of dual Bragg reflector at either end of the interaction structure increases the impedance matching and the radio frequency (RF) coupling efficiency at the input and output ports, thereby reducing the RF leakage at the electron gun and collector ends, from 15% to 25% to less than 0.6%. The attenuator section is simple to fabricate and optimally designed in order to provide an effective isolation (>20 dB) between the input RF signal in the input section and the RF signal reflected from the output section. The dispersion analysis, the transmission analysis of each section, and the beam-wave interactions were simulated using the Dassault system's computer simulation technology (CST) eigenmode solver, time-domain solver, and the particle-in-cell (PIC) solver, respectively. The proposed design of the SDV SWS conclusively provides an enormous bandwidth of ~25 GHz with 20-dB gain for <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band amplifier, when compared to its solid-state counterparts and earlier reported work as per the author's knowledge.]]></description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2020.3040223</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplification ; Amplifiers ; Attenuators ; Bandwidths ; Beam–wave interaction (BWI) ; Blades ; Bragg reflector ; Computer simulation ; Couplers ; Dispersion ; dispersion analysis ; Electron beams ; Gain ; Particle in cell technique ; Radio frequency ; slow-wave structure (SWS) ; Solvers ; staggered double vane (SDV) ; Wave interaction</subject><ispartof>IEEE transactions on plasma science, 2021-01, Vol.49 (1), p.251-257</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-906b9fe9ecaf2358a738e78e9a3c14c74c442c574fe2ce44bb5597fa6fd4c56b3</citedby><cites>FETCH-LOGICAL-c291t-906b9fe9ecaf2358a738e78e9a3c14c74c442c574fe2ce44bb5597fa6fd4c56b3</cites><orcidid>0000-0002-3702-997X ; 0000-0003-1950-5570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9292446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9292446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stanislaus, Richards Joe</creatorcontrib><creatorcontrib>Bera, Anirban</creatorcontrib><creatorcontrib>Sharma, Rajendra K.</creatorcontrib><title>Design and Analysis of a Wideband Staggered Double-Vane Slow-Wave Structure for W-Band Amplifier</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description><![CDATA[This article presents the design and analysis of a staggered double-vane (SDV) slow-wave structure (SWS) for <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band amplifier, with 20-dB gain and a very high bandwidth (~25%). The use of dual Bragg reflector at either end of the interaction structure increases the impedance matching and the radio frequency (RF) coupling efficiency at the input and output ports, thereby reducing the RF leakage at the electron gun and collector ends, from 15% to 25% to less than 0.6%. The attenuator section is simple to fabricate and optimally designed in order to provide an effective isolation (>20 dB) between the input RF signal in the input section and the RF signal reflected from the output section. The dispersion analysis, the transmission analysis of each section, and the beam-wave interactions were simulated using the Dassault system's computer simulation technology (CST) eigenmode solver, time-domain solver, and the particle-in-cell (PIC) solver, respectively. The proposed design of the SDV SWS conclusively provides an enormous bandwidth of ~25 GHz with 20-dB gain for <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band amplifier, when compared to its solid-state counterparts and earlier reported work as per the author's knowledge.]]></description><subject>Amplification</subject><subject>Amplifiers</subject><subject>Attenuators</subject><subject>Bandwidths</subject><subject>Beam–wave interaction (BWI)</subject><subject>Blades</subject><subject>Bragg reflector</subject><subject>Computer simulation</subject><subject>Couplers</subject><subject>Dispersion</subject><subject>dispersion analysis</subject><subject>Electron beams</subject><subject>Gain</subject><subject>Particle in cell technique</subject><subject>Radio frequency</subject><subject>slow-wave structure (SWS)</subject><subject>Solvers</subject><subject>staggered double vane (SDV)</subject><subject>Wave interaction</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKfvgi8BnzPz1aZ5nJtfMFDYdI8xTW9GR9fOpFX239u54dM9XM45cH4IXTM6Yozqu8XbfMQppyNBJeVcnKAB00ITLVRyigaUakFExsQ5uohxTSmTCeUD9DmFWK5qbOsCj2tb7WIZceOxxcuygHz_nrd2tYIABZ42XV4B-bA14HnV_JCl_e5VGzrXdgGwbwJekvu_rs22Kn0J4RKdeVtFuDreIXp_fFhMnsns9ellMp4RxzVriaZprj1ocNZzkWRWiQxUBtoKx6RT0knJXaKkB-5AyjxPEq28TX0hXZLmYohuD73b0Hx1EFuzbrrQL4qGS9UP1ylNexc9uFxoYgzgzTaUGxt2hlGz52h6jmbP0Rw59pGbQ6QEgH-75ppLmYpfMY1uFg</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Stanislaus, Richards Joe</creator><creator>Bera, Anirban</creator><creator>Sharma, Rajendra K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3702-997X</orcidid><orcidid>https://orcid.org/0000-0003-1950-5570</orcidid></search><sort><creationdate>202101</creationdate><title>Design and Analysis of a Wideband Staggered Double-Vane Slow-Wave Structure for W-Band Amplifier</title><author>Stanislaus, Richards Joe ; Bera, Anirban ; Sharma, Rajendra K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-906b9fe9ecaf2358a738e78e9a3c14c74c442c574fe2ce44bb5597fa6fd4c56b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplification</topic><topic>Amplifiers</topic><topic>Attenuators</topic><topic>Bandwidths</topic><topic>Beam–wave interaction (BWI)</topic><topic>Blades</topic><topic>Bragg reflector</topic><topic>Computer simulation</topic><topic>Couplers</topic><topic>Dispersion</topic><topic>dispersion analysis</topic><topic>Electron beams</topic><topic>Gain</topic><topic>Particle in cell technique</topic><topic>Radio frequency</topic><topic>slow-wave structure (SWS)</topic><topic>Solvers</topic><topic>staggered double vane (SDV)</topic><topic>Wave interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanislaus, Richards Joe</creatorcontrib><creatorcontrib>Bera, Anirban</creatorcontrib><creatorcontrib>Sharma, Rajendra K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stanislaus, Richards Joe</au><au>Bera, Anirban</au><au>Sharma, Rajendra K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis of a Wideband Staggered Double-Vane Slow-Wave Structure for W-Band Amplifier</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2021-01</date><risdate>2021</risdate><volume>49</volume><issue>1</issue><spage>251</spage><epage>257</epage><pages>251-257</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract><![CDATA[This article presents the design and analysis of a staggered double-vane (SDV) slow-wave structure (SWS) for <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band amplifier, with 20-dB gain and a very high bandwidth (~25%). The use of dual Bragg reflector at either end of the interaction structure increases the impedance matching and the radio frequency (RF) coupling efficiency at the input and output ports, thereby reducing the RF leakage at the electron gun and collector ends, from 15% to 25% to less than 0.6%. The attenuator section is simple to fabricate and optimally designed in order to provide an effective isolation (>20 dB) between the input RF signal in the input section and the RF signal reflected from the output section. The dispersion analysis, the transmission analysis of each section, and the beam-wave interactions were simulated using the Dassault system's computer simulation technology (CST) eigenmode solver, time-domain solver, and the particle-in-cell (PIC) solver, respectively. The proposed design of the SDV SWS conclusively provides an enormous bandwidth of ~25 GHz with 20-dB gain for <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band amplifier, when compared to its solid-state counterparts and earlier reported work as per the author's knowledge.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2020.3040223</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3702-997X</orcidid><orcidid>https://orcid.org/0000-0003-1950-5570</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2021-01, Vol.49 (1), p.251-257
issn 0093-3813
1939-9375
language eng
recordid cdi_ieee_primary_9292446
source IEEE Electronic Library (IEL)
subjects Amplification
Amplifiers
Attenuators
Bandwidths
Beam–wave interaction (BWI)
Blades
Bragg reflector
Computer simulation
Couplers
Dispersion
dispersion analysis
Electron beams
Gain
Particle in cell technique
Radio frequency
slow-wave structure (SWS)
Solvers
staggered double vane (SDV)
Wave interaction
title Design and Analysis of a Wideband Staggered Double-Vane Slow-Wave Structure for W-Band Amplifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20of%20a%20Wideband%20Staggered%20Double-Vane%20Slow-Wave%20Structure%20for%20W-Band%20Amplifier&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Stanislaus,%20Richards%20Joe&rft.date=2021-01&rft.volume=49&rft.issue=1&rft.spage=251&rft.epage=257&rft.pages=251-257&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2020.3040223&rft_dat=%3Cproquest_RIE%3E2478139606%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478139606&rft_id=info:pmid/&rft_ieee_id=9292446&rfr_iscdi=true