Design and Analysis of a Wideband Staggered Double-Vane Slow-Wave Structure for W-Band Amplifier
This article presents the design and analysis of a staggered double-vane (SDV) slow-wave structure (SWS) for W -band amplifier, with 20-dB gain and a very high bandwidth (~25%). The use of dual Bragg reflector at either end of the interaction structure increases the impedance matching and the radio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2021-01, Vol.49 (1), p.251-257 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | 1 |
container_start_page | 251 |
container_title | IEEE transactions on plasma science |
container_volume | 49 |
creator | Stanislaus, Richards Joe Bera, Anirban Sharma, Rajendra K. |
description | This article presents the design and analysis of a staggered double-vane (SDV) slow-wave structure (SWS) for W -band amplifier, with 20-dB gain and a very high bandwidth (~25%). The use of dual Bragg reflector at either end of the interaction structure increases the impedance matching and the radio frequency (RF) coupling efficiency at the input and output ports, thereby reducing the RF leakage at the electron gun and collector ends, from 15% to 25% to less than 0.6%. The attenuator section is simple to fabricate and optimally designed in order to provide an effective isolation (>20 dB) between the input RF signal in the input section and the RF signal reflected from the output section. The dispersion analysis, the transmission analysis of each section, and the beam-wave interactions were simulated using the Dassault system's computer simulation technology (CST) eigenmode solver, time-domain solver, and the particle-in-cell (PIC) solver, respectively. The proposed design of the SDV SWS conclusively provides an enormous bandwidth of ~25 GHz with 20-dB gain for W -band amplifier, when compared to its solid-state counterparts and earlier reported work as per the author's knowledge. |
doi_str_mv | 10.1109/TPS.2020.3040223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9292446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9292446</ieee_id><sourcerecordid>2478139606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-906b9fe9ecaf2358a738e78e9a3c14c74c442c574fe2ce44bb5597fa6fd4c56b3</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKfvgi8BnzPz1aZ5nJtfMFDYdI8xTW9GR9fOpFX239u54dM9XM45cH4IXTM6Yozqu8XbfMQppyNBJeVcnKAB00ITLVRyigaUakFExsQ5uohxTSmTCeUD9DmFWK5qbOsCj2tb7WIZceOxxcuygHz_nrd2tYIABZ42XV4B-bA14HnV_JCl_e5VGzrXdgGwbwJekvu_rs22Kn0J4RKdeVtFuDreIXp_fFhMnsns9ellMp4RxzVriaZprj1ocNZzkWRWiQxUBtoKx6RT0knJXaKkB-5AyjxPEq28TX0hXZLmYohuD73b0Hx1EFuzbrrQL4qGS9UP1ylNexc9uFxoYgzgzTaUGxt2hlGz52h6jmbP0Rw59pGbQ6QEgH-75ppLmYpfMY1uFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478139606</pqid></control><display><type>article</type><title>Design and Analysis of a Wideband Staggered Double-Vane Slow-Wave Structure for W-Band Amplifier</title><source>IEEE Electronic Library (IEL)</source><creator>Stanislaus, Richards Joe ; Bera, Anirban ; Sharma, Rajendra K.</creator><creatorcontrib>Stanislaus, Richards Joe ; Bera, Anirban ; Sharma, Rajendra K.</creatorcontrib><description><![CDATA[This article presents the design and analysis of a staggered double-vane (SDV) slow-wave structure (SWS) for <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band amplifier, with 20-dB gain and a very high bandwidth (~25%). The use of dual Bragg reflector at either end of the interaction structure increases the impedance matching and the radio frequency (RF) coupling efficiency at the input and output ports, thereby reducing the RF leakage at the electron gun and collector ends, from 15% to 25% to less than 0.6%. The attenuator section is simple to fabricate and optimally designed in order to provide an effective isolation (>20 dB) between the input RF signal in the input section and the RF signal reflected from the output section. The dispersion analysis, the transmission analysis of each section, and the beam-wave interactions were simulated using the Dassault system's computer simulation technology (CST) eigenmode solver, time-domain solver, and the particle-in-cell (PIC) solver, respectively. The proposed design of the SDV SWS conclusively provides an enormous bandwidth of ~25 GHz with 20-dB gain for <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band amplifier, when compared to its solid-state counterparts and earlier reported work as per the author's knowledge.]]></description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2020.3040223</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplification ; Amplifiers ; Attenuators ; Bandwidths ; Beam–wave interaction (BWI) ; Blades ; Bragg reflector ; Computer simulation ; Couplers ; Dispersion ; dispersion analysis ; Electron beams ; Gain ; Particle in cell technique ; Radio frequency ; slow-wave structure (SWS) ; Solvers ; staggered double vane (SDV) ; Wave interaction</subject><ispartof>IEEE transactions on plasma science, 2021-01, Vol.49 (1), p.251-257</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-906b9fe9ecaf2358a738e78e9a3c14c74c442c574fe2ce44bb5597fa6fd4c56b3</citedby><cites>FETCH-LOGICAL-c291t-906b9fe9ecaf2358a738e78e9a3c14c74c442c574fe2ce44bb5597fa6fd4c56b3</cites><orcidid>0000-0002-3702-997X ; 0000-0003-1950-5570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9292446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9292446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stanislaus, Richards Joe</creatorcontrib><creatorcontrib>Bera, Anirban</creatorcontrib><creatorcontrib>Sharma, Rajendra K.</creatorcontrib><title>Design and Analysis of a Wideband Staggered Double-Vane Slow-Wave Structure for W-Band Amplifier</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description><![CDATA[This article presents the design and analysis of a staggered double-vane (SDV) slow-wave structure (SWS) for <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band amplifier, with 20-dB gain and a very high bandwidth (~25%). The use of dual Bragg reflector at either end of the interaction structure increases the impedance matching and the radio frequency (RF) coupling efficiency at the input and output ports, thereby reducing the RF leakage at the electron gun and collector ends, from 15% to 25% to less than 0.6%. The attenuator section is simple to fabricate and optimally designed in order to provide an effective isolation (>20 dB) between the input RF signal in the input section and the RF signal reflected from the output section. The dispersion analysis, the transmission analysis of each section, and the beam-wave interactions were simulated using the Dassault system's computer simulation technology (CST) eigenmode solver, time-domain solver, and the particle-in-cell (PIC) solver, respectively. The proposed design of the SDV SWS conclusively provides an enormous bandwidth of ~25 GHz with 20-dB gain for <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band amplifier, when compared to its solid-state counterparts and earlier reported work as per the author's knowledge.]]></description><subject>Amplification</subject><subject>Amplifiers</subject><subject>Attenuators</subject><subject>Bandwidths</subject><subject>Beam–wave interaction (BWI)</subject><subject>Blades</subject><subject>Bragg reflector</subject><subject>Computer simulation</subject><subject>Couplers</subject><subject>Dispersion</subject><subject>dispersion analysis</subject><subject>Electron beams</subject><subject>Gain</subject><subject>Particle in cell technique</subject><subject>Radio frequency</subject><subject>slow-wave structure (SWS)</subject><subject>Solvers</subject><subject>staggered double vane (SDV)</subject><subject>Wave interaction</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKfvgi8BnzPz1aZ5nJtfMFDYdI8xTW9GR9fOpFX239u54dM9XM45cH4IXTM6Yozqu8XbfMQppyNBJeVcnKAB00ITLVRyigaUakFExsQ5uohxTSmTCeUD9DmFWK5qbOsCj2tb7WIZceOxxcuygHz_nrd2tYIABZ42XV4B-bA14HnV_JCl_e5VGzrXdgGwbwJekvu_rs22Kn0J4RKdeVtFuDreIXp_fFhMnsns9ellMp4RxzVriaZprj1ocNZzkWRWiQxUBtoKx6RT0knJXaKkB-5AyjxPEq28TX0hXZLmYohuD73b0Hx1EFuzbrrQL4qGS9UP1ylNexc9uFxoYgzgzTaUGxt2hlGz52h6jmbP0Rw59pGbQ6QEgH-75ppLmYpfMY1uFg</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Stanislaus, Richards Joe</creator><creator>Bera, Anirban</creator><creator>Sharma, Rajendra K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3702-997X</orcidid><orcidid>https://orcid.org/0000-0003-1950-5570</orcidid></search><sort><creationdate>202101</creationdate><title>Design and Analysis of a Wideband Staggered Double-Vane Slow-Wave Structure for W-Band Amplifier</title><author>Stanislaus, Richards Joe ; Bera, Anirban ; Sharma, Rajendra K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-906b9fe9ecaf2358a738e78e9a3c14c74c442c574fe2ce44bb5597fa6fd4c56b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplification</topic><topic>Amplifiers</topic><topic>Attenuators</topic><topic>Bandwidths</topic><topic>Beam–wave interaction (BWI)</topic><topic>Blades</topic><topic>Bragg reflector</topic><topic>Computer simulation</topic><topic>Couplers</topic><topic>Dispersion</topic><topic>dispersion analysis</topic><topic>Electron beams</topic><topic>Gain</topic><topic>Particle in cell technique</topic><topic>Radio frequency</topic><topic>slow-wave structure (SWS)</topic><topic>Solvers</topic><topic>staggered double vane (SDV)</topic><topic>Wave interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanislaus, Richards Joe</creatorcontrib><creatorcontrib>Bera, Anirban</creatorcontrib><creatorcontrib>Sharma, Rajendra K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stanislaus, Richards Joe</au><au>Bera, Anirban</au><au>Sharma, Rajendra K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis of a Wideband Staggered Double-Vane Slow-Wave Structure for W-Band Amplifier</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2021-01</date><risdate>2021</risdate><volume>49</volume><issue>1</issue><spage>251</spage><epage>257</epage><pages>251-257</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract><![CDATA[This article presents the design and analysis of a staggered double-vane (SDV) slow-wave structure (SWS) for <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band amplifier, with 20-dB gain and a very high bandwidth (~25%). The use of dual Bragg reflector at either end of the interaction structure increases the impedance matching and the radio frequency (RF) coupling efficiency at the input and output ports, thereby reducing the RF leakage at the electron gun and collector ends, from 15% to 25% to less than 0.6%. The attenuator section is simple to fabricate and optimally designed in order to provide an effective isolation (>20 dB) between the input RF signal in the input section and the RF signal reflected from the output section. The dispersion analysis, the transmission analysis of each section, and the beam-wave interactions were simulated using the Dassault system's computer simulation technology (CST) eigenmode solver, time-domain solver, and the particle-in-cell (PIC) solver, respectively. The proposed design of the SDV SWS conclusively provides an enormous bandwidth of ~25 GHz with 20-dB gain for <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band amplifier, when compared to its solid-state counterparts and earlier reported work as per the author's knowledge.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2020.3040223</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3702-997X</orcidid><orcidid>https://orcid.org/0000-0003-1950-5570</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2021-01, Vol.49 (1), p.251-257 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_ieee_primary_9292446 |
source | IEEE Electronic Library (IEL) |
subjects | Amplification Amplifiers Attenuators Bandwidths Beam–wave interaction (BWI) Blades Bragg reflector Computer simulation Couplers Dispersion dispersion analysis Electron beams Gain Particle in cell technique Radio frequency slow-wave structure (SWS) Solvers staggered double vane (SDV) Wave interaction |
title | Design and Analysis of a Wideband Staggered Double-Vane Slow-Wave Structure for W-Band Amplifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20of%20a%20Wideband%20Staggered%20Double-Vane%20Slow-Wave%20Structure%20for%20W-Band%20Amplifier&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Stanislaus,%20Richards%20Joe&rft.date=2021-01&rft.volume=49&rft.issue=1&rft.spage=251&rft.epage=257&rft.pages=251-257&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2020.3040223&rft_dat=%3Cproquest_RIE%3E2478139606%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478139606&rft_id=info:pmid/&rft_ieee_id=9292446&rfr_iscdi=true |