Impulsive Control Via Variable Impulsive Perturbations on a Generalized Robust Stability for Cohen-Grossberg Neural Networks With Mixed Delays
Cohen-Grossberg neural networks with delays provide a very powerful tool in the study of information processing, parallel computation, pattern recognition and solving of optimization problems. The robust stability behavior of such neural network models is essential in their numerous applications. Al...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.222890-222899 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 222899 |
---|---|
container_issue | |
container_start_page | 222890 |
container_title | IEEE access |
container_volume | 8 |
creator | Cao, Jinde Stamov, Trayan Sotirov, Sotir Sotirova, Evdokia Stamova, Ivanka |
description | Cohen-Grossberg neural networks with delays provide a very powerful tool in the study of information processing, parallel computation, pattern recognition and solving of optimization problems. The robust stability behavior of such neural network models is essential in their numerous applications. Also, since the effect of various types of impulsive perturbations has been found to be remarkably important in the implementation of complex networks, the hybrid impulsive networks paradigm has gained increasing popularity during the last few decades. In this paper, an impulsive control strategy is proposed via variable impulsive perturbations for the robust stability with respect to manifolds for a class of Cohen-Grossberg neural networks with mixed delays and uncertain parameters. To this end, first new stability criteria are established for the nominal system under impulsive control. Then, the robust stability results are proposed. Finally, examples are considered to illustrate our impulsive control strategy. We generalize and extend some known robust stability results considering stability with respect to manifolds instead of isolated states stability. |
doi_str_mv | 10.1109/ACCESS.2020.3044191 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9291445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9291445</ieee_id><doaj_id>oai_doaj_org_article_29c5df0dfade462291a8ae45edeff232</doaj_id><sourcerecordid>2472322199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2149db3454d68fbea4e25e184502238c74bf7724f82b18fdfa16a172f3c9d2b43</originalsourceid><addsrcrecordid>eNpNkd1u1DAQhSMEElXpE_TGEtdZ7LHz48sqlO1K5UcslEvLTsatlzRebAdYHoJnxkuqgm_GGp_zzcinKM4ZXTFG5auLrrvcbldAga44FYJJ9qQ4AVbLkle8fvrf_XlxFuOO5tPmVtWcFL839_t5jO47ks5PKfiR3DhNbnRw2oxI_j1_wJDmYHRyforET0STNU4Y9Oh-4UA-ejPHRLZJGze6dCDWh4y8w6lcBx-jwXBL3uGc9bmkHz58jeSLS3fkrfuZ_a9x1If4onhm9Rjx7KGeFp_fXH7qrsrr9-tNd3Fd9oK2qQQm5GC4qMRQt9agFggVslZUFIC3fSOMbRoQtgXDWjtYzWrNGrC8lwMYwU-LzcIdvN6pfXD3OhyU1079bfhwq3RIrh9RgeyrwdLMGFDUAJLpVqOocEBrgUNmvVxY--C_zRiT2vk5THl9BaLJCmBSZhVfVP3xNwLax6mMqmOOaslRHXNUDzlm1_nicoj46JB5CSEq_gdkHZuO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472322199</pqid></control><display><type>article</type><title>Impulsive Control Via Variable Impulsive Perturbations on a Generalized Robust Stability for Cohen-Grossberg Neural Networks With Mixed Delays</title><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>IEEE Xplore Open Access Journals</source><creator>Cao, Jinde ; Stamov, Trayan ; Sotirov, Sotir ; Sotirova, Evdokia ; Stamova, Ivanka</creator><creatorcontrib>Cao, Jinde ; Stamov, Trayan ; Sotirov, Sotir ; Sotirova, Evdokia ; Stamova, Ivanka</creatorcontrib><description>Cohen-Grossberg neural networks with delays provide a very powerful tool in the study of information processing, parallel computation, pattern recognition and solving of optimization problems. The robust stability behavior of such neural network models is essential in their numerous applications. Also, since the effect of various types of impulsive perturbations has been found to be remarkably important in the implementation of complex networks, the hybrid impulsive networks paradigm has gained increasing popularity during the last few decades. In this paper, an impulsive control strategy is proposed via variable impulsive perturbations for the robust stability with respect to manifolds for a class of Cohen-Grossberg neural networks with mixed delays and uncertain parameters. To this end, first new stability criteria are established for the nominal system under impulsive control. Then, the robust stability results are proposed. Finally, examples are considered to illustrate our impulsive control strategy. We generalize and extend some known robust stability results considering stability with respect to manifolds instead of isolated states stability.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3044191</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cohen–Grossberg neural networks ; Control stability ; Data processing ; Delay effects ; Delays ; h-manifolds ; impulsive control ; Manifolds ; mixed delays ; Neural networks ; Optimization ; Parallel processing ; Parameter uncertainty ; Pattern recognition ; Perturbation methods ; Robust control ; Robust stability ; Stability criteria ; uncertain parameters ; variable impulsive perturbations</subject><ispartof>IEEE access, 2020, Vol.8, p.222890-222899</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2149db3454d68fbea4e25e184502238c74bf7724f82b18fdfa16a172f3c9d2b43</citedby><cites>FETCH-LOGICAL-c408t-2149db3454d68fbea4e25e184502238c74bf7724f82b18fdfa16a172f3c9d2b43</cites><orcidid>0000-0003-3133-7119 ; 0000-0001-6723-2699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9291445$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Stamov, Trayan</creatorcontrib><creatorcontrib>Sotirov, Sotir</creatorcontrib><creatorcontrib>Sotirova, Evdokia</creatorcontrib><creatorcontrib>Stamova, Ivanka</creatorcontrib><title>Impulsive Control Via Variable Impulsive Perturbations on a Generalized Robust Stability for Cohen-Grossberg Neural Networks With Mixed Delays</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cohen-Grossberg neural networks with delays provide a very powerful tool in the study of information processing, parallel computation, pattern recognition and solving of optimization problems. The robust stability behavior of such neural network models is essential in their numerous applications. Also, since the effect of various types of impulsive perturbations has been found to be remarkably important in the implementation of complex networks, the hybrid impulsive networks paradigm has gained increasing popularity during the last few decades. In this paper, an impulsive control strategy is proposed via variable impulsive perturbations for the robust stability with respect to manifolds for a class of Cohen-Grossberg neural networks with mixed delays and uncertain parameters. To this end, first new stability criteria are established for the nominal system under impulsive control. Then, the robust stability results are proposed. Finally, examples are considered to illustrate our impulsive control strategy. We generalize and extend some known robust stability results considering stability with respect to manifolds instead of isolated states stability.</description><subject>Cohen–Grossberg neural networks</subject><subject>Control stability</subject><subject>Data processing</subject><subject>Delay effects</subject><subject>Delays</subject><subject>h-manifolds</subject><subject>impulsive control</subject><subject>Manifolds</subject><subject>mixed delays</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parallel processing</subject><subject>Parameter uncertainty</subject><subject>Pattern recognition</subject><subject>Perturbation methods</subject><subject>Robust control</subject><subject>Robust stability</subject><subject>Stability criteria</subject><subject>uncertain parameters</subject><subject>variable impulsive perturbations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1u1DAQhSMEElXpE_TGEtdZ7LHz48sqlO1K5UcslEvLTsatlzRebAdYHoJnxkuqgm_GGp_zzcinKM4ZXTFG5auLrrvcbldAga44FYJJ9qQ4AVbLkle8fvrf_XlxFuOO5tPmVtWcFL839_t5jO47ks5PKfiR3DhNbnRw2oxI_j1_wJDmYHRyforET0STNU4Y9Oh-4UA-ejPHRLZJGze6dCDWh4y8w6lcBx-jwXBL3uGc9bmkHz58jeSLS3fkrfuZ_a9x1If4onhm9Rjx7KGeFp_fXH7qrsrr9-tNd3Fd9oK2qQQm5GC4qMRQt9agFggVslZUFIC3fSOMbRoQtgXDWjtYzWrNGrC8lwMYwU-LzcIdvN6pfXD3OhyU1079bfhwq3RIrh9RgeyrwdLMGFDUAJLpVqOocEBrgUNmvVxY--C_zRiT2vk5THl9BaLJCmBSZhVfVP3xNwLax6mMqmOOaslRHXNUDzlm1_nicoj46JB5CSEq_gdkHZuO</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cao, Jinde</creator><creator>Stamov, Trayan</creator><creator>Sotirov, Sotir</creator><creator>Sotirova, Evdokia</creator><creator>Stamova, Ivanka</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0001-6723-2699</orcidid></search><sort><creationdate>2020</creationdate><title>Impulsive Control Via Variable Impulsive Perturbations on a Generalized Robust Stability for Cohen-Grossberg Neural Networks With Mixed Delays</title><author>Cao, Jinde ; Stamov, Trayan ; Sotirov, Sotir ; Sotirova, Evdokia ; Stamova, Ivanka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2149db3454d68fbea4e25e184502238c74bf7724f82b18fdfa16a172f3c9d2b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cohen–Grossberg neural networks</topic><topic>Control stability</topic><topic>Data processing</topic><topic>Delay effects</topic><topic>Delays</topic><topic>h-manifolds</topic><topic>impulsive control</topic><topic>Manifolds</topic><topic>mixed delays</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parallel processing</topic><topic>Parameter uncertainty</topic><topic>Pattern recognition</topic><topic>Perturbation methods</topic><topic>Robust control</topic><topic>Robust stability</topic><topic>Stability criteria</topic><topic>uncertain parameters</topic><topic>variable impulsive perturbations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Stamov, Trayan</creatorcontrib><creatorcontrib>Sotirov, Sotir</creatorcontrib><creatorcontrib>Sotirova, Evdokia</creatorcontrib><creatorcontrib>Stamova, Ivanka</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Jinde</au><au>Stamov, Trayan</au><au>Sotirov, Sotir</au><au>Sotirova, Evdokia</au><au>Stamova, Ivanka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impulsive Control Via Variable Impulsive Perturbations on a Generalized Robust Stability for Cohen-Grossberg Neural Networks With Mixed Delays</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>222890</spage><epage>222899</epage><pages>222890-222899</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cohen-Grossberg neural networks with delays provide a very powerful tool in the study of information processing, parallel computation, pattern recognition and solving of optimization problems. The robust stability behavior of such neural network models is essential in their numerous applications. Also, since the effect of various types of impulsive perturbations has been found to be remarkably important in the implementation of complex networks, the hybrid impulsive networks paradigm has gained increasing popularity during the last few decades. In this paper, an impulsive control strategy is proposed via variable impulsive perturbations for the robust stability with respect to manifolds for a class of Cohen-Grossberg neural networks with mixed delays and uncertain parameters. To this end, first new stability criteria are established for the nominal system under impulsive control. Then, the robust stability results are proposed. Finally, examples are considered to illustrate our impulsive control strategy. We generalize and extend some known robust stability results considering stability with respect to manifolds instead of isolated states stability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3044191</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0001-6723-2699</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.222890-222899 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9291445 |
source | DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); IEEE Xplore Open Access Journals |
subjects | Cohen–Grossberg neural networks Control stability Data processing Delay effects Delays h-manifolds impulsive control Manifolds mixed delays Neural networks Optimization Parallel processing Parameter uncertainty Pattern recognition Perturbation methods Robust control Robust stability Stability criteria uncertain parameters variable impulsive perturbations |
title | Impulsive Control Via Variable Impulsive Perturbations on a Generalized Robust Stability for Cohen-Grossberg Neural Networks With Mixed Delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impulsive%20Control%20Via%20Variable%20Impulsive%20Perturbations%20on%20a%20Generalized%20Robust%20Stability%20for%20Cohen-Grossberg%20Neural%20Networks%20With%20Mixed%20Delays&rft.jtitle=IEEE%20access&rft.au=Cao,%20Jinde&rft.date=2020&rft.volume=8&rft.spage=222890&rft.epage=222899&rft.pages=222890-222899&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3044191&rft_dat=%3Cproquest_ieee_%3E2472322199%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472322199&rft_id=info:pmid/&rft_ieee_id=9291445&rft_doaj_id=oai_doaj_org_article_29c5df0dfade462291a8ae45edeff232&rfr_iscdi=true |