Impulsive Control Via Variable Impulsive Perturbations on a Generalized Robust Stability for Cohen-Grossberg Neural Networks With Mixed Delays

Cohen-Grossberg neural networks with delays provide a very powerful tool in the study of information processing, parallel computation, pattern recognition and solving of optimization problems. The robust stability behavior of such neural network models is essential in their numerous applications. Al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.222890-222899
Hauptverfasser: Cao, Jinde, Stamov, Trayan, Sotirov, Sotir, Sotirova, Evdokia, Stamova, Ivanka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222899
container_issue
container_start_page 222890
container_title IEEE access
container_volume 8
creator Cao, Jinde
Stamov, Trayan
Sotirov, Sotir
Sotirova, Evdokia
Stamova, Ivanka
description Cohen-Grossberg neural networks with delays provide a very powerful tool in the study of information processing, parallel computation, pattern recognition and solving of optimization problems. The robust stability behavior of such neural network models is essential in their numerous applications. Also, since the effect of various types of impulsive perturbations has been found to be remarkably important in the implementation of complex networks, the hybrid impulsive networks paradigm has gained increasing popularity during the last few decades. In this paper, an impulsive control strategy is proposed via variable impulsive perturbations for the robust stability with respect to manifolds for a class of Cohen-Grossberg neural networks with mixed delays and uncertain parameters. To this end, first new stability criteria are established for the nominal system under impulsive control. Then, the robust stability results are proposed. Finally, examples are considered to illustrate our impulsive control strategy. We generalize and extend some known robust stability results considering stability with respect to manifolds instead of isolated states stability.
doi_str_mv 10.1109/ACCESS.2020.3044191
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9291445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9291445</ieee_id><doaj_id>oai_doaj_org_article_29c5df0dfade462291a8ae45edeff232</doaj_id><sourcerecordid>2472322199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2149db3454d68fbea4e25e184502238c74bf7724f82b18fdfa16a172f3c9d2b43</originalsourceid><addsrcrecordid>eNpNkd1u1DAQhSMEElXpE_TGEtdZ7LHz48sqlO1K5UcslEvLTsatlzRebAdYHoJnxkuqgm_GGp_zzcinKM4ZXTFG5auLrrvcbldAga44FYJJ9qQ4AVbLkle8fvrf_XlxFuOO5tPmVtWcFL839_t5jO47ks5PKfiR3DhNbnRw2oxI_j1_wJDmYHRyforET0STNU4Y9Oh-4UA-ejPHRLZJGze6dCDWh4y8w6lcBx-jwXBL3uGc9bmkHz58jeSLS3fkrfuZ_a9x1If4onhm9Rjx7KGeFp_fXH7qrsrr9-tNd3Fd9oK2qQQm5GC4qMRQt9agFggVslZUFIC3fSOMbRoQtgXDWjtYzWrNGrC8lwMYwU-LzcIdvN6pfXD3OhyU1079bfhwq3RIrh9RgeyrwdLMGFDUAJLpVqOocEBrgUNmvVxY--C_zRiT2vk5THl9BaLJCmBSZhVfVP3xNwLax6mMqmOOaslRHXNUDzlm1_nicoj46JB5CSEq_gdkHZuO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472322199</pqid></control><display><type>article</type><title>Impulsive Control Via Variable Impulsive Perturbations on a Generalized Robust Stability for Cohen-Grossberg Neural Networks With Mixed Delays</title><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>IEEE Xplore Open Access Journals</source><creator>Cao, Jinde ; Stamov, Trayan ; Sotirov, Sotir ; Sotirova, Evdokia ; Stamova, Ivanka</creator><creatorcontrib>Cao, Jinde ; Stamov, Trayan ; Sotirov, Sotir ; Sotirova, Evdokia ; Stamova, Ivanka</creatorcontrib><description>Cohen-Grossberg neural networks with delays provide a very powerful tool in the study of information processing, parallel computation, pattern recognition and solving of optimization problems. The robust stability behavior of such neural network models is essential in their numerous applications. Also, since the effect of various types of impulsive perturbations has been found to be remarkably important in the implementation of complex networks, the hybrid impulsive networks paradigm has gained increasing popularity during the last few decades. In this paper, an impulsive control strategy is proposed via variable impulsive perturbations for the robust stability with respect to manifolds for a class of Cohen-Grossberg neural networks with mixed delays and uncertain parameters. To this end, first new stability criteria are established for the nominal system under impulsive control. Then, the robust stability results are proposed. Finally, examples are considered to illustrate our impulsive control strategy. We generalize and extend some known robust stability results considering stability with respect to manifolds instead of isolated states stability.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3044191</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cohen–Grossberg neural networks ; Control stability ; Data processing ; Delay effects ; Delays ; h-manifolds ; impulsive control ; Manifolds ; mixed delays ; Neural networks ; Optimization ; Parallel processing ; Parameter uncertainty ; Pattern recognition ; Perturbation methods ; Robust control ; Robust stability ; Stability criteria ; uncertain parameters ; variable impulsive perturbations</subject><ispartof>IEEE access, 2020, Vol.8, p.222890-222899</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2149db3454d68fbea4e25e184502238c74bf7724f82b18fdfa16a172f3c9d2b43</citedby><cites>FETCH-LOGICAL-c408t-2149db3454d68fbea4e25e184502238c74bf7724f82b18fdfa16a172f3c9d2b43</cites><orcidid>0000-0003-3133-7119 ; 0000-0001-6723-2699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9291445$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Stamov, Trayan</creatorcontrib><creatorcontrib>Sotirov, Sotir</creatorcontrib><creatorcontrib>Sotirova, Evdokia</creatorcontrib><creatorcontrib>Stamova, Ivanka</creatorcontrib><title>Impulsive Control Via Variable Impulsive Perturbations on a Generalized Robust Stability for Cohen-Grossberg Neural Networks With Mixed Delays</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cohen-Grossberg neural networks with delays provide a very powerful tool in the study of information processing, parallel computation, pattern recognition and solving of optimization problems. The robust stability behavior of such neural network models is essential in their numerous applications. Also, since the effect of various types of impulsive perturbations has been found to be remarkably important in the implementation of complex networks, the hybrid impulsive networks paradigm has gained increasing popularity during the last few decades. In this paper, an impulsive control strategy is proposed via variable impulsive perturbations for the robust stability with respect to manifolds for a class of Cohen-Grossberg neural networks with mixed delays and uncertain parameters. To this end, first new stability criteria are established for the nominal system under impulsive control. Then, the robust stability results are proposed. Finally, examples are considered to illustrate our impulsive control strategy. We generalize and extend some known robust stability results considering stability with respect to manifolds instead of isolated states stability.</description><subject>Cohen–Grossberg neural networks</subject><subject>Control stability</subject><subject>Data processing</subject><subject>Delay effects</subject><subject>Delays</subject><subject>h-manifolds</subject><subject>impulsive control</subject><subject>Manifolds</subject><subject>mixed delays</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parallel processing</subject><subject>Parameter uncertainty</subject><subject>Pattern recognition</subject><subject>Perturbation methods</subject><subject>Robust control</subject><subject>Robust stability</subject><subject>Stability criteria</subject><subject>uncertain parameters</subject><subject>variable impulsive perturbations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1u1DAQhSMEElXpE_TGEtdZ7LHz48sqlO1K5UcslEvLTsatlzRebAdYHoJnxkuqgm_GGp_zzcinKM4ZXTFG5auLrrvcbldAga44FYJJ9qQ4AVbLkle8fvrf_XlxFuOO5tPmVtWcFL839_t5jO47ks5PKfiR3DhNbnRw2oxI_j1_wJDmYHRyforET0STNU4Y9Oh-4UA-ejPHRLZJGze6dCDWh4y8w6lcBx-jwXBL3uGc9bmkHz58jeSLS3fkrfuZ_a9x1If4onhm9Rjx7KGeFp_fXH7qrsrr9-tNd3Fd9oK2qQQm5GC4qMRQt9agFggVslZUFIC3fSOMbRoQtgXDWjtYzWrNGrC8lwMYwU-LzcIdvN6pfXD3OhyU1079bfhwq3RIrh9RgeyrwdLMGFDUAJLpVqOocEBrgUNmvVxY--C_zRiT2vk5THl9BaLJCmBSZhVfVP3xNwLax6mMqmOOaslRHXNUDzlm1_nicoj46JB5CSEq_gdkHZuO</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cao, Jinde</creator><creator>Stamov, Trayan</creator><creator>Sotirov, Sotir</creator><creator>Sotirova, Evdokia</creator><creator>Stamova, Ivanka</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0001-6723-2699</orcidid></search><sort><creationdate>2020</creationdate><title>Impulsive Control Via Variable Impulsive Perturbations on a Generalized Robust Stability for Cohen-Grossberg Neural Networks With Mixed Delays</title><author>Cao, Jinde ; Stamov, Trayan ; Sotirov, Sotir ; Sotirova, Evdokia ; Stamova, Ivanka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2149db3454d68fbea4e25e184502238c74bf7724f82b18fdfa16a172f3c9d2b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cohen–Grossberg neural networks</topic><topic>Control stability</topic><topic>Data processing</topic><topic>Delay effects</topic><topic>Delays</topic><topic>h-manifolds</topic><topic>impulsive control</topic><topic>Manifolds</topic><topic>mixed delays</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parallel processing</topic><topic>Parameter uncertainty</topic><topic>Pattern recognition</topic><topic>Perturbation methods</topic><topic>Robust control</topic><topic>Robust stability</topic><topic>Stability criteria</topic><topic>uncertain parameters</topic><topic>variable impulsive perturbations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Stamov, Trayan</creatorcontrib><creatorcontrib>Sotirov, Sotir</creatorcontrib><creatorcontrib>Sotirova, Evdokia</creatorcontrib><creatorcontrib>Stamova, Ivanka</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Jinde</au><au>Stamov, Trayan</au><au>Sotirov, Sotir</au><au>Sotirova, Evdokia</au><au>Stamova, Ivanka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impulsive Control Via Variable Impulsive Perturbations on a Generalized Robust Stability for Cohen-Grossberg Neural Networks With Mixed Delays</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>222890</spage><epage>222899</epage><pages>222890-222899</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cohen-Grossberg neural networks with delays provide a very powerful tool in the study of information processing, parallel computation, pattern recognition and solving of optimization problems. The robust stability behavior of such neural network models is essential in their numerous applications. Also, since the effect of various types of impulsive perturbations has been found to be remarkably important in the implementation of complex networks, the hybrid impulsive networks paradigm has gained increasing popularity during the last few decades. In this paper, an impulsive control strategy is proposed via variable impulsive perturbations for the robust stability with respect to manifolds for a class of Cohen-Grossberg neural networks with mixed delays and uncertain parameters. To this end, first new stability criteria are established for the nominal system under impulsive control. Then, the robust stability results are proposed. Finally, examples are considered to illustrate our impulsive control strategy. We generalize and extend some known robust stability results considering stability with respect to manifolds instead of isolated states stability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3044191</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0001-6723-2699</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.222890-222899
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9291445
source DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); IEEE Xplore Open Access Journals
subjects Cohen–Grossberg neural networks
Control stability
Data processing
Delay effects
Delays
h-manifolds
impulsive control
Manifolds
mixed delays
Neural networks
Optimization
Parallel processing
Parameter uncertainty
Pattern recognition
Perturbation methods
Robust control
Robust stability
Stability criteria
uncertain parameters
variable impulsive perturbations
title Impulsive Control Via Variable Impulsive Perturbations on a Generalized Robust Stability for Cohen-Grossberg Neural Networks With Mixed Delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impulsive%20Control%20Via%20Variable%20Impulsive%20Perturbations%20on%20a%20Generalized%20Robust%20Stability%20for%20Cohen-Grossberg%20Neural%20Networks%20With%20Mixed%20Delays&rft.jtitle=IEEE%20access&rft.au=Cao,%20Jinde&rft.date=2020&rft.volume=8&rft.spage=222890&rft.epage=222899&rft.pages=222890-222899&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3044191&rft_dat=%3Cproquest_ieee_%3E2472322199%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472322199&rft_id=info:pmid/&rft_ieee_id=9291445&rft_doaj_id=oai_doaj_org_article_29c5df0dfade462291a8ae45edeff232&rfr_iscdi=true