Task-Oriented Motion Mapping on Robots of Various Configuration Using Body Role Division
Many works in robot teaching either focus only on teaching task knowledge, such as geometric constraints, or motion knowledge, such as the motion for accomplishing a task. However, to effectively teach a complex task sequence to a robot, it is important to take advantage of both task and motion know...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2021-04, Vol.6 (2), p.413-420 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 420 |
---|---|
container_issue | 2 |
container_start_page | 413 |
container_title | IEEE robotics and automation letters |
container_volume | 6 |
creator | Sasabuchi, Kazuhiro Wake, Naoki Ikeuchi, Katsushi |
description | Many works in robot teaching either focus only on teaching task knowledge, such as geometric constraints, or motion knowledge, such as the motion for accomplishing a task. However, to effectively teach a complex task sequence to a robot, it is important to take advantage of both task and motion knowledge. The task knowledge provides the goals of each individual task within the sequence and reduces the number of required human demonstrations, whereas the motion knowledge contain the task-to-task constraints that would otherwise require expert knowledge to model the problem. In this letter, we propose a body role division approach that combines both types of knowledge using a single human demonstration. The method is inspired by facts on human body motion and uses a body structural analogy to decompose a robot's body configuration into different roles: body parts that are dominant for imitating the human motion and body parts that are substitutional for adjusting the imitation with respect to the task knowledge. Our results show that our method scales to robots of different number of arm links, guides a robot's configuration to one that achieves an upcoming task, and is potentially beneficial for teaching a range of task sequences. |
doi_str_mv | 10.1109/LRA.2020.3044029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9290359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9290359</ieee_id><sourcerecordid>2474854557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-ad5139ab46c592aa7a5f04cecb4f956265871be7994eb1044eed47216b97da373</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNTeBS8LnlP3M9s91voJLYXSirdlk0zK1pqNu4nQf29ii3iaF-aZGeZB6JqSMaVE381X0zEjjIw5EYIwfYYGjCuVcJWm5__yJRrFuCOEUMkU13KA3tc2fiTL4KBqoMAL3zhf4YWta1dtcRdXPvNNxL7EbzY430Y881Xptm2wv-gm9uC9Lw4dugf84L5d7BpX6KK0-wijUx2izdPjevaSzJfPr7PpPMk5501iC0m5tplIc6mZtcrKkogc8kyUWqYslRNFM1BaC8ho9x1AIRSjaaZVYbniQ3R73FsH_9VCbMzOt6HqThomlJhIIWVPkSOVBx9jgNLUwX3acDCUmF6h6RSaXqE5KexGbo4jDgD-cM004VLzH850bBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474854557</pqid></control><display><type>article</type><title>Task-Oriented Motion Mapping on Robots of Various Configuration Using Body Role Division</title><source>IEEE Electronic Library (IEL)</source><creator>Sasabuchi, Kazuhiro ; Wake, Naoki ; Ikeuchi, Katsushi</creator><creatorcontrib>Sasabuchi, Kazuhiro ; Wake, Naoki ; Ikeuchi, Katsushi</creatorcontrib><description>Many works in robot teaching either focus only on teaching task knowledge, such as geometric constraints, or motion knowledge, such as the motion for accomplishing a task. However, to effectively teach a complex task sequence to a robot, it is important to take advantage of both task and motion knowledge. The task knowledge provides the goals of each individual task within the sequence and reduces the number of required human demonstrations, whereas the motion knowledge contain the task-to-task constraints that would otherwise require expert knowledge to model the problem. In this letter, we propose a body role division approach that combines both types of knowledge using a single human demonstration. The method is inspired by facts on human body motion and uses a body structural analogy to decompose a robot's body configuration into different roles: body parts that are dominant for imitating the human motion and body parts that are substitutional for adjusting the imitation with respect to the task knowledge. Our results show that our method scales to robots of different number of arm links, guides a robot's configuration to one that achieves an upcoming task, and is potentially beneficial for teaching a range of task sequences.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.3044029</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Body parts ; Configurations ; Dual arm manipulation ; Education ; End effectors ; Geometric constraints ; Grasping ; Human motion ; Knowledge ; learning from demonstration ; Mathematical model ; mobile manipulation ; Planning ; Robot dynamics ; Robots ; Task analysis ; Teaching ; Torso</subject><ispartof>IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.413-420</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-ad5139ab46c592aa7a5f04cecb4f956265871be7994eb1044eed47216b97da373</citedby><cites>FETCH-LOGICAL-c333t-ad5139ab46c592aa7a5f04cecb4f956265871be7994eb1044eed47216b97da373</cites><orcidid>0000-0002-5408-3089 ; 0000-0001-8278-2373 ; 0000-0001-9758-9357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9290359$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Sasabuchi, Kazuhiro</creatorcontrib><creatorcontrib>Wake, Naoki</creatorcontrib><creatorcontrib>Ikeuchi, Katsushi</creatorcontrib><title>Task-Oriented Motion Mapping on Robots of Various Configuration Using Body Role Division</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Many works in robot teaching either focus only on teaching task knowledge, such as geometric constraints, or motion knowledge, such as the motion for accomplishing a task. However, to effectively teach a complex task sequence to a robot, it is important to take advantage of both task and motion knowledge. The task knowledge provides the goals of each individual task within the sequence and reduces the number of required human demonstrations, whereas the motion knowledge contain the task-to-task constraints that would otherwise require expert knowledge to model the problem. In this letter, we propose a body role division approach that combines both types of knowledge using a single human demonstration. The method is inspired by facts on human body motion and uses a body structural analogy to decompose a robot's body configuration into different roles: body parts that are dominant for imitating the human motion and body parts that are substitutional for adjusting the imitation with respect to the task knowledge. Our results show that our method scales to robots of different number of arm links, guides a robot's configuration to one that achieves an upcoming task, and is potentially beneficial for teaching a range of task sequences.</description><subject>Body parts</subject><subject>Configurations</subject><subject>Dual arm manipulation</subject><subject>Education</subject><subject>End effectors</subject><subject>Geometric constraints</subject><subject>Grasping</subject><subject>Human motion</subject><subject>Knowledge</subject><subject>learning from demonstration</subject><subject>Mathematical model</subject><subject>mobile manipulation</subject><subject>Planning</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Task analysis</subject><subject>Teaching</subject><subject>Torso</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsNTeBS8LnlP3M9s91voJLYXSirdlk0zK1pqNu4nQf29ii3iaF-aZGeZB6JqSMaVE381X0zEjjIw5EYIwfYYGjCuVcJWm5__yJRrFuCOEUMkU13KA3tc2fiTL4KBqoMAL3zhf4YWta1dtcRdXPvNNxL7EbzY430Y881Xptm2wv-gm9uC9Lw4dugf84L5d7BpX6KK0-wijUx2izdPjevaSzJfPr7PpPMk5501iC0m5tplIc6mZtcrKkogc8kyUWqYslRNFM1BaC8ho9x1AIRSjaaZVYbniQ3R73FsH_9VCbMzOt6HqThomlJhIIWVPkSOVBx9jgNLUwX3acDCUmF6h6RSaXqE5KexGbo4jDgD-cM004VLzH850bBM</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Sasabuchi, Kazuhiro</creator><creator>Wake, Naoki</creator><creator>Ikeuchi, Katsushi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5408-3089</orcidid><orcidid>https://orcid.org/0000-0001-8278-2373</orcidid><orcidid>https://orcid.org/0000-0001-9758-9357</orcidid></search><sort><creationdate>20210401</creationdate><title>Task-Oriented Motion Mapping on Robots of Various Configuration Using Body Role Division</title><author>Sasabuchi, Kazuhiro ; Wake, Naoki ; Ikeuchi, Katsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-ad5139ab46c592aa7a5f04cecb4f956265871be7994eb1044eed47216b97da373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Body parts</topic><topic>Configurations</topic><topic>Dual arm manipulation</topic><topic>Education</topic><topic>End effectors</topic><topic>Geometric constraints</topic><topic>Grasping</topic><topic>Human motion</topic><topic>Knowledge</topic><topic>learning from demonstration</topic><topic>Mathematical model</topic><topic>mobile manipulation</topic><topic>Planning</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Task analysis</topic><topic>Teaching</topic><topic>Torso</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasabuchi, Kazuhiro</creatorcontrib><creatorcontrib>Wake, Naoki</creatorcontrib><creatorcontrib>Ikeuchi, Katsushi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasabuchi, Kazuhiro</au><au>Wake, Naoki</au><au>Ikeuchi, Katsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task-Oriented Motion Mapping on Robots of Various Configuration Using Body Role Division</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>6</volume><issue>2</issue><spage>413</spage><epage>420</epage><pages>413-420</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Many works in robot teaching either focus only on teaching task knowledge, such as geometric constraints, or motion knowledge, such as the motion for accomplishing a task. However, to effectively teach a complex task sequence to a robot, it is important to take advantage of both task and motion knowledge. The task knowledge provides the goals of each individual task within the sequence and reduces the number of required human demonstrations, whereas the motion knowledge contain the task-to-task constraints that would otherwise require expert knowledge to model the problem. In this letter, we propose a body role division approach that combines both types of knowledge using a single human demonstration. The method is inspired by facts on human body motion and uses a body structural analogy to decompose a robot's body configuration into different roles: body parts that are dominant for imitating the human motion and body parts that are substitutional for adjusting the imitation with respect to the task knowledge. Our results show that our method scales to robots of different number of arm links, guides a robot's configuration to one that achieves an upcoming task, and is potentially beneficial for teaching a range of task sequences.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.3044029</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5408-3089</orcidid><orcidid>https://orcid.org/0000-0001-8278-2373</orcidid><orcidid>https://orcid.org/0000-0001-9758-9357</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2021-04, Vol.6 (2), p.413-420 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_9290359 |
source | IEEE Electronic Library (IEL) |
subjects | Body parts Configurations Dual arm manipulation Education End effectors Geometric constraints Grasping Human motion Knowledge learning from demonstration Mathematical model mobile manipulation Planning Robot dynamics Robots Task analysis Teaching Torso |
title | Task-Oriented Motion Mapping on Robots of Various Configuration Using Body Role Division |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task-Oriented%20Motion%20Mapping%20on%20Robots%20of%20Various%20Configuration%20Using%20Body%20Role%20Division&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Sasabuchi,%20Kazuhiro&rft.date=2021-04-01&rft.volume=6&rft.issue=2&rft.spage=413&rft.epage=420&rft.pages=413-420&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.3044029&rft_dat=%3Cproquest_ieee_%3E2474854557%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474854557&rft_id=info:pmid/&rft_ieee_id=9290359&rfr_iscdi=true |