A New Microscopic Approach to Traffic Flow Classification Using a Convolutional Neural Network Object Detector and a Multi-Tracker Algorithm
Traffic congestion is a significant issue in urban areas and can cause adverse effects. In this paper, our proposal categorizes the traffic activity from video through three steps: vehicle monitoring, feature extraction, and classification. The vehicle monitoring step comprises an object detector ba...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-04, Vol.23 (4), p.3797-3801 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3801 |
---|---|
container_issue | 4 |
container_start_page | 3797 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Ribeiro, Matheus Vieira Lessa Aching Samatelo, Jorge Leonid Cetertich Bazzan, Ana Lucia |
description | Traffic congestion is a significant issue in urban areas and can cause adverse effects. In this paper, our proposal categorizes the traffic activity from video through three steps: vehicle monitoring, feature extraction, and classification. The vehicle monitoring step comprises an object detector based on a convolutional neural network and multi-object tracker. The feature extraction step uses information related to each detected vehicle, in various points of the road, to represent the traffic condition through three features: density, flow, and velocity. We tested on the UCSD dataset and achieved the best performance with 98.82% of accuracy, which outperformed the state-of-the-art methods. |
doi_str_mv | 10.1109/TITS.2020.3040594 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9288993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9288993</ieee_id><sourcerecordid>2645245495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6369d01ffe11573947e998b0f9a503671f3637f1bccaef77d7f8bbf474de1f393</originalsourceid><addsrcrecordid>eNo9kNFOwyAYhRujiXP6AMYbEq87oUBbLpfpdMnmLuyuG0phY-tGBeriO_jQUrd49cPhnJOfL4ruERwhBNlTMSs-RglM4AhDAikjF9EAUZrHEKL0sj8nJGaQwuvoxrltUAlFaBD9jMG7PIKFFtY4YVotwLhtreFiA7wBheVKBW3amCOYNNw5Ha7ca3MAK6cPa8DBxBy-TNP1Gm9CW2f_hj8auwPLaiuFB8_Sh2Es4Ic6RBZd43UcysVOWjBu1sZqv9nfRleKN07enecwWk1fislbPF--zibjeSwShn2c4pTVECklEaIZZiSTjOUVVIxTiNMMKZziTKFKCC5VltWZyqtKkYzUMrwxPIweT73ho5-ddL7cms6G7V2ZpCSQooTR4EInV4_GWanK1uo9t98lgmUPveyhlz308gw9ZB5OGS2l_PezJM8Zw_gXO3V_Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645245495</pqid></control><display><type>article</type><title>A New Microscopic Approach to Traffic Flow Classification Using a Convolutional Neural Network Object Detector and a Multi-Tracker Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Ribeiro, Matheus Vieira Lessa ; Aching Samatelo, Jorge Leonid ; Cetertich Bazzan, Ana Lucia</creator><creatorcontrib>Ribeiro, Matheus Vieira Lessa ; Aching Samatelo, Jorge Leonid ; Cetertich Bazzan, Ana Lucia</creatorcontrib><description>Traffic congestion is a significant issue in urban areas and can cause adverse effects. In this paper, our proposal categorizes the traffic activity from video through three steps: vehicle monitoring, feature extraction, and classification. The vehicle monitoring step comprises an object detector based on a convolutional neural network and multi-object tracker. The feature extraction step uses information related to each detected vehicle, in various points of the road, to represent the traffic condition through three features: density, flow, and velocity. We tested on the UCSD dataset and achieved the best performance with 98.82% of accuracy, which outperformed the state-of-the-art methods.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.3040594</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Classification ; convolutional neural network ; Detectors ; Feature extraction ; microscopic features ; Microscopy ; Monitoring ; Neural networks ; object detector and tracker ; Proposals ; random forest ; Support vector machines ; Task analysis ; Traffic congestion ; Traffic flow ; Traffic flow classification ; Urban areas ; Video data</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-04, Vol.23 (4), p.3797-3801</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6369d01ffe11573947e998b0f9a503671f3637f1bccaef77d7f8bbf474de1f393</citedby><cites>FETCH-LOGICAL-c293t-6369d01ffe11573947e998b0f9a503671f3637f1bccaef77d7f8bbf474de1f393</cites><orcidid>0000-0002-2803-9607 ; 0000-0001-7679-4132 ; 0000-0001-9913-9990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9288993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9288993$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ribeiro, Matheus Vieira Lessa</creatorcontrib><creatorcontrib>Aching Samatelo, Jorge Leonid</creatorcontrib><creatorcontrib>Cetertich Bazzan, Ana Lucia</creatorcontrib><title>A New Microscopic Approach to Traffic Flow Classification Using a Convolutional Neural Network Object Detector and a Multi-Tracker Algorithm</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Traffic congestion is a significant issue in urban areas and can cause adverse effects. In this paper, our proposal categorizes the traffic activity from video through three steps: vehicle monitoring, feature extraction, and classification. The vehicle monitoring step comprises an object detector based on a convolutional neural network and multi-object tracker. The feature extraction step uses information related to each detected vehicle, in various points of the road, to represent the traffic condition through three features: density, flow, and velocity. We tested on the UCSD dataset and achieved the best performance with 98.82% of accuracy, which outperformed the state-of-the-art methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>convolutional neural network</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>microscopic features</subject><subject>Microscopy</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>object detector and tracker</subject><subject>Proposals</subject><subject>random forest</subject><subject>Support vector machines</subject><subject>Task analysis</subject><subject>Traffic congestion</subject><subject>Traffic flow</subject><subject>Traffic flow classification</subject><subject>Urban areas</subject><subject>Video data</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFOwyAYhRujiXP6AMYbEq87oUBbLpfpdMnmLuyuG0phY-tGBeriO_jQUrd49cPhnJOfL4ruERwhBNlTMSs-RglM4AhDAikjF9EAUZrHEKL0sj8nJGaQwuvoxrltUAlFaBD9jMG7PIKFFtY4YVotwLhtreFiA7wBheVKBW3amCOYNNw5Ha7ca3MAK6cPa8DBxBy-TNP1Gm9CW2f_hj8auwPLaiuFB8_Sh2Es4Ic6RBZd43UcysVOWjBu1sZqv9nfRleKN07enecwWk1fislbPF--zibjeSwShn2c4pTVECklEaIZZiSTjOUVVIxTiNMMKZziTKFKCC5VltWZyqtKkYzUMrwxPIweT73ho5-ddL7cms6G7V2ZpCSQooTR4EInV4_GWanK1uo9t98lgmUPveyhlz308gw9ZB5OGS2l_PezJM8Zw_gXO3V_Ng</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Ribeiro, Matheus Vieira Lessa</creator><creator>Aching Samatelo, Jorge Leonid</creator><creator>Cetertich Bazzan, Ana Lucia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2803-9607</orcidid><orcidid>https://orcid.org/0000-0001-7679-4132</orcidid><orcidid>https://orcid.org/0000-0001-9913-9990</orcidid></search><sort><creationdate>20220401</creationdate><title>A New Microscopic Approach to Traffic Flow Classification Using a Convolutional Neural Network Object Detector and a Multi-Tracker Algorithm</title><author>Ribeiro, Matheus Vieira Lessa ; Aching Samatelo, Jorge Leonid ; Cetertich Bazzan, Ana Lucia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6369d01ffe11573947e998b0f9a503671f3637f1bccaef77d7f8bbf474de1f393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>convolutional neural network</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>microscopic features</topic><topic>Microscopy</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>object detector and tracker</topic><topic>Proposals</topic><topic>random forest</topic><topic>Support vector machines</topic><topic>Task analysis</topic><topic>Traffic congestion</topic><topic>Traffic flow</topic><topic>Traffic flow classification</topic><topic>Urban areas</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, Matheus Vieira Lessa</creatorcontrib><creatorcontrib>Aching Samatelo, Jorge Leonid</creatorcontrib><creatorcontrib>Cetertich Bazzan, Ana Lucia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ribeiro, Matheus Vieira Lessa</au><au>Aching Samatelo, Jorge Leonid</au><au>Cetertich Bazzan, Ana Lucia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Microscopic Approach to Traffic Flow Classification Using a Convolutional Neural Network Object Detector and a Multi-Tracker Algorithm</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>23</volume><issue>4</issue><spage>3797</spage><epage>3801</epage><pages>3797-3801</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Traffic congestion is a significant issue in urban areas and can cause adverse effects. In this paper, our proposal categorizes the traffic activity from video through three steps: vehicle monitoring, feature extraction, and classification. The vehicle monitoring step comprises an object detector based on a convolutional neural network and multi-object tracker. The feature extraction step uses information related to each detected vehicle, in various points of the road, to represent the traffic condition through three features: density, flow, and velocity. We tested on the UCSD dataset and achieved the best performance with 98.82% of accuracy, which outperformed the state-of-the-art methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.3040594</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2803-9607</orcidid><orcidid>https://orcid.org/0000-0001-7679-4132</orcidid><orcidid>https://orcid.org/0000-0001-9913-9990</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-04, Vol.23 (4), p.3797-3801 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_9288993 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Classification convolutional neural network Detectors Feature extraction microscopic features Microscopy Monitoring Neural networks object detector and tracker Proposals random forest Support vector machines Task analysis Traffic congestion Traffic flow Traffic flow classification Urban areas Video data |
title | A New Microscopic Approach to Traffic Flow Classification Using a Convolutional Neural Network Object Detector and a Multi-Tracker Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Microscopic%20Approach%20to%20Traffic%20Flow%20Classification%20Using%20a%20Convolutional%20Neural%20Network%20Object%20Detector%20and%20a%20Multi-Tracker%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ribeiro,%20Matheus%20Vieira%20Lessa&rft.date=2022-04-01&rft.volume=23&rft.issue=4&rft.spage=3797&rft.epage=3801&rft.pages=3797-3801&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.3040594&rft_dat=%3Cproquest_RIE%3E2645245495%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645245495&rft_id=info:pmid/&rft_ieee_id=9288993&rfr_iscdi=true |