A New Microscopic Approach to Traffic Flow Classification Using a Convolutional Neural Network Object Detector and a Multi-Tracker Algorithm

Traffic congestion is a significant issue in urban areas and can cause adverse effects. In this paper, our proposal categorizes the traffic activity from video through three steps: vehicle monitoring, feature extraction, and classification. The vehicle monitoring step comprises an object detector ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-04, Vol.23 (4), p.3797-3801
Hauptverfasser: Ribeiro, Matheus Vieira Lessa, Aching Samatelo, Jorge Leonid, Cetertich Bazzan, Ana Lucia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3801
container_issue 4
container_start_page 3797
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Ribeiro, Matheus Vieira Lessa
Aching Samatelo, Jorge Leonid
Cetertich Bazzan, Ana Lucia
description Traffic congestion is a significant issue in urban areas and can cause adverse effects. In this paper, our proposal categorizes the traffic activity from video through three steps: vehicle monitoring, feature extraction, and classification. The vehicle monitoring step comprises an object detector based on a convolutional neural network and multi-object tracker. The feature extraction step uses information related to each detected vehicle, in various points of the road, to represent the traffic condition through three features: density, flow, and velocity. We tested on the UCSD dataset and achieved the best performance with 98.82% of accuracy, which outperformed the state-of-the-art methods.
doi_str_mv 10.1109/TITS.2020.3040594
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9288993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9288993</ieee_id><sourcerecordid>2645245495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6369d01ffe11573947e998b0f9a503671f3637f1bccaef77d7f8bbf474de1f393</originalsourceid><addsrcrecordid>eNo9kNFOwyAYhRujiXP6AMYbEq87oUBbLpfpdMnmLuyuG0phY-tGBeriO_jQUrd49cPhnJOfL4ruERwhBNlTMSs-RglM4AhDAikjF9EAUZrHEKL0sj8nJGaQwuvoxrltUAlFaBD9jMG7PIKFFtY4YVotwLhtreFiA7wBheVKBW3amCOYNNw5Ha7ca3MAK6cPa8DBxBy-TNP1Gm9CW2f_hj8auwPLaiuFB8_Sh2Es4Ic6RBZd43UcysVOWjBu1sZqv9nfRleKN07enecwWk1fislbPF--zibjeSwShn2c4pTVECklEaIZZiSTjOUVVIxTiNMMKZziTKFKCC5VltWZyqtKkYzUMrwxPIweT73ho5-ddL7cms6G7V2ZpCSQooTR4EInV4_GWanK1uo9t98lgmUPveyhlz308gw9ZB5OGS2l_PezJM8Zw_gXO3V_Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645245495</pqid></control><display><type>article</type><title>A New Microscopic Approach to Traffic Flow Classification Using a Convolutional Neural Network Object Detector and a Multi-Tracker Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Ribeiro, Matheus Vieira Lessa ; Aching Samatelo, Jorge Leonid ; Cetertich Bazzan, Ana Lucia</creator><creatorcontrib>Ribeiro, Matheus Vieira Lessa ; Aching Samatelo, Jorge Leonid ; Cetertich Bazzan, Ana Lucia</creatorcontrib><description>Traffic congestion is a significant issue in urban areas and can cause adverse effects. In this paper, our proposal categorizes the traffic activity from video through three steps: vehicle monitoring, feature extraction, and classification. The vehicle monitoring step comprises an object detector based on a convolutional neural network and multi-object tracker. The feature extraction step uses information related to each detected vehicle, in various points of the road, to represent the traffic condition through three features: density, flow, and velocity. We tested on the UCSD dataset and achieved the best performance with 98.82% of accuracy, which outperformed the state-of-the-art methods.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.3040594</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Classification ; convolutional neural network ; Detectors ; Feature extraction ; microscopic features ; Microscopy ; Monitoring ; Neural networks ; object detector and tracker ; Proposals ; random forest ; Support vector machines ; Task analysis ; Traffic congestion ; Traffic flow ; Traffic flow classification ; Urban areas ; Video data</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-04, Vol.23 (4), p.3797-3801</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6369d01ffe11573947e998b0f9a503671f3637f1bccaef77d7f8bbf474de1f393</citedby><cites>FETCH-LOGICAL-c293t-6369d01ffe11573947e998b0f9a503671f3637f1bccaef77d7f8bbf474de1f393</cites><orcidid>0000-0002-2803-9607 ; 0000-0001-7679-4132 ; 0000-0001-9913-9990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9288993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9288993$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ribeiro, Matheus Vieira Lessa</creatorcontrib><creatorcontrib>Aching Samatelo, Jorge Leonid</creatorcontrib><creatorcontrib>Cetertich Bazzan, Ana Lucia</creatorcontrib><title>A New Microscopic Approach to Traffic Flow Classification Using a Convolutional Neural Network Object Detector and a Multi-Tracker Algorithm</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Traffic congestion is a significant issue in urban areas and can cause adverse effects. In this paper, our proposal categorizes the traffic activity from video through three steps: vehicle monitoring, feature extraction, and classification. The vehicle monitoring step comprises an object detector based on a convolutional neural network and multi-object tracker. The feature extraction step uses information related to each detected vehicle, in various points of the road, to represent the traffic condition through three features: density, flow, and velocity. We tested on the UCSD dataset and achieved the best performance with 98.82% of accuracy, which outperformed the state-of-the-art methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>convolutional neural network</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>microscopic features</subject><subject>Microscopy</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>object detector and tracker</subject><subject>Proposals</subject><subject>random forest</subject><subject>Support vector machines</subject><subject>Task analysis</subject><subject>Traffic congestion</subject><subject>Traffic flow</subject><subject>Traffic flow classification</subject><subject>Urban areas</subject><subject>Video data</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFOwyAYhRujiXP6AMYbEq87oUBbLpfpdMnmLuyuG0phY-tGBeriO_jQUrd49cPhnJOfL4ruERwhBNlTMSs-RglM4AhDAikjF9EAUZrHEKL0sj8nJGaQwuvoxrltUAlFaBD9jMG7PIKFFtY4YVotwLhtreFiA7wBheVKBW3amCOYNNw5Ha7ca3MAK6cPa8DBxBy-TNP1Gm9CW2f_hj8auwPLaiuFB8_Sh2Es4Ic6RBZd43UcysVOWjBu1sZqv9nfRleKN07enecwWk1fislbPF--zibjeSwShn2c4pTVECklEaIZZiSTjOUVVIxTiNMMKZziTKFKCC5VltWZyqtKkYzUMrwxPIweT73ho5-ddL7cms6G7V2ZpCSQooTR4EInV4_GWanK1uo9t98lgmUPveyhlz308gw9ZB5OGS2l_PezJM8Zw_gXO3V_Ng</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Ribeiro, Matheus Vieira Lessa</creator><creator>Aching Samatelo, Jorge Leonid</creator><creator>Cetertich Bazzan, Ana Lucia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2803-9607</orcidid><orcidid>https://orcid.org/0000-0001-7679-4132</orcidid><orcidid>https://orcid.org/0000-0001-9913-9990</orcidid></search><sort><creationdate>20220401</creationdate><title>A New Microscopic Approach to Traffic Flow Classification Using a Convolutional Neural Network Object Detector and a Multi-Tracker Algorithm</title><author>Ribeiro, Matheus Vieira Lessa ; Aching Samatelo, Jorge Leonid ; Cetertich Bazzan, Ana Lucia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6369d01ffe11573947e998b0f9a503671f3637f1bccaef77d7f8bbf474de1f393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>convolutional neural network</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>microscopic features</topic><topic>Microscopy</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>object detector and tracker</topic><topic>Proposals</topic><topic>random forest</topic><topic>Support vector machines</topic><topic>Task analysis</topic><topic>Traffic congestion</topic><topic>Traffic flow</topic><topic>Traffic flow classification</topic><topic>Urban areas</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, Matheus Vieira Lessa</creatorcontrib><creatorcontrib>Aching Samatelo, Jorge Leonid</creatorcontrib><creatorcontrib>Cetertich Bazzan, Ana Lucia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ribeiro, Matheus Vieira Lessa</au><au>Aching Samatelo, Jorge Leonid</au><au>Cetertich Bazzan, Ana Lucia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Microscopic Approach to Traffic Flow Classification Using a Convolutional Neural Network Object Detector and a Multi-Tracker Algorithm</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>23</volume><issue>4</issue><spage>3797</spage><epage>3801</epage><pages>3797-3801</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Traffic congestion is a significant issue in urban areas and can cause adverse effects. In this paper, our proposal categorizes the traffic activity from video through three steps: vehicle monitoring, feature extraction, and classification. The vehicle monitoring step comprises an object detector based on a convolutional neural network and multi-object tracker. The feature extraction step uses information related to each detected vehicle, in various points of the road, to represent the traffic condition through three features: density, flow, and velocity. We tested on the UCSD dataset and achieved the best performance with 98.82% of accuracy, which outperformed the state-of-the-art methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.3040594</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2803-9607</orcidid><orcidid>https://orcid.org/0000-0001-7679-4132</orcidid><orcidid>https://orcid.org/0000-0001-9913-9990</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-04, Vol.23 (4), p.3797-3801
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_9288993
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Classification
convolutional neural network
Detectors
Feature extraction
microscopic features
Microscopy
Monitoring
Neural networks
object detector and tracker
Proposals
random forest
Support vector machines
Task analysis
Traffic congestion
Traffic flow
Traffic flow classification
Urban areas
Video data
title A New Microscopic Approach to Traffic Flow Classification Using a Convolutional Neural Network Object Detector and a Multi-Tracker Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Microscopic%20Approach%20to%20Traffic%20Flow%20Classification%20Using%20a%20Convolutional%20Neural%20Network%20Object%20Detector%20and%20a%20Multi-Tracker%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ribeiro,%20Matheus%20Vieira%20Lessa&rft.date=2022-04-01&rft.volume=23&rft.issue=4&rft.spage=3797&rft.epage=3801&rft.pages=3797-3801&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.3040594&rft_dat=%3Cproquest_RIE%3E2645245495%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645245495&rft_id=info:pmid/&rft_ieee_id=9288993&rfr_iscdi=true