Risk-Bounded Control Using Stochastic Barrier Functions

In this letter, we design real-time controllers that react to uncertainties with stochastic characteristics and bound the probability of a failure in finite-time to a given desired value. Stochastic control barrier functions are used to derive sufficient conditions on the control input that bound th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2021-11, Vol.5 (5), p.1831-1836
Hauptverfasser: Yaghoubi, Shakiba, Majd, Keyvan, Fainekos, Georgios, Yamaguchi, Tomoya, Prokhorov, Danil, Hoxha, Bardh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1836
container_issue 5
container_start_page 1831
container_title IEEE control systems letters
container_volume 5
creator Yaghoubi, Shakiba
Majd, Keyvan
Fainekos, Georgios
Yamaguchi, Tomoya
Prokhorov, Danil
Hoxha, Bardh
description In this letter, we design real-time controllers that react to uncertainties with stochastic characteristics and bound the probability of a failure in finite-time to a given desired value. Stochastic control barrier functions are used to derive sufficient conditions on the control input that bound the probability that the states of the system enter an unsafe region within a finite time. These conditions are combined with reachability conditions and used in an optimization problem to find the required control actions that lead the system to a goal set. We illustrate our theoretical development using a simulation of a lane-changing scenario in a highway with dense traffic.
doi_str_mv 10.1109/LCSYS.2020.3043287
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_9286497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9286497</ieee_id><sourcerecordid>10_1109_LCSYS_2020_3043287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-6443bb9ed7ce235d9be77891e55ea5ad3e577d0a4253ecf58a46e9b477879c4d3</originalsourceid><addsrcrecordid>eNpNj01OwzAYRC0EElXpBWCTCyT4N46XNKKAFAmJ0AUry7G_gKHEyHYX3J6WVojVzGLeSA-hS4IrQrC67tr-pa8oprhimDPayBM0o1yKknBRn_7r52iR0jvGmDRUYqpmSD759FEuw3Zy4Io2TDmGTbFOfnot-hzsm0nZ22JpYvQQi9V2stmHKV2gs9FsEiyOOUfr1e1ze192j3cP7U1XWkZILmvO2TAocNICZcKpAaRsFAEhwAjjGAgpHTacCgZ2FI3hNaiB70ZSWe7YHNHDr40hpQij_or-08RvTbDe2-tfe72310f7HXR1gDwA_AGKNjVXkv0ATbFWFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Risk-Bounded Control Using Stochastic Barrier Functions</title><source>IEEE Electronic Library (IEL)</source><creator>Yaghoubi, Shakiba ; Majd, Keyvan ; Fainekos, Georgios ; Yamaguchi, Tomoya ; Prokhorov, Danil ; Hoxha, Bardh</creator><creatorcontrib>Yaghoubi, Shakiba ; Majd, Keyvan ; Fainekos, Georgios ; Yamaguchi, Tomoya ; Prokhorov, Danil ; Hoxha, Bardh</creatorcontrib><description>In this letter, we design real-time controllers that react to uncertainties with stochastic characteristics and bound the probability of a failure in finite-time to a given desired value. Stochastic control barrier functions are used to derive sufficient conditions on the control input that bound the probability that the states of the system enter an unsafe region within a finite time. These conditions are combined with reachability conditions and used in an optimization problem to find the required control actions that lead the system to a goal set. We illustrate our theoretical development using a simulation of a lane-changing scenario in a highway with dense traffic.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2020.3043287</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Barrier function ; Generators ; Planning ; Real-time systems ; robotics ; Safety ; Stochastic processes ; Stochastic systems ; Uncertainty</subject><ispartof>IEEE control systems letters, 2021-11, Vol.5 (5), p.1831-1836</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-6443bb9ed7ce235d9be77891e55ea5ad3e577d0a4253ecf58a46e9b477879c4d3</citedby><cites>FETCH-LOGICAL-c311t-6443bb9ed7ce235d9be77891e55ea5ad3e577d0a4253ecf58a46e9b477879c4d3</cites><orcidid>0000-0002-0456-2129 ; 0000-0002-6208-4233 ; 0000-0003-0996-5725 ; 0000-0001-6255-7566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9286497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9286497$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yaghoubi, Shakiba</creatorcontrib><creatorcontrib>Majd, Keyvan</creatorcontrib><creatorcontrib>Fainekos, Georgios</creatorcontrib><creatorcontrib>Yamaguchi, Tomoya</creatorcontrib><creatorcontrib>Prokhorov, Danil</creatorcontrib><creatorcontrib>Hoxha, Bardh</creatorcontrib><title>Risk-Bounded Control Using Stochastic Barrier Functions</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>In this letter, we design real-time controllers that react to uncertainties with stochastic characteristics and bound the probability of a failure in finite-time to a given desired value. Stochastic control barrier functions are used to derive sufficient conditions on the control input that bound the probability that the states of the system enter an unsafe region within a finite time. These conditions are combined with reachability conditions and used in an optimization problem to find the required control actions that lead the system to a goal set. We illustrate our theoretical development using a simulation of a lane-changing scenario in a highway with dense traffic.</description><subject>Barrier function</subject><subject>Generators</subject><subject>Planning</subject><subject>Real-time systems</subject><subject>robotics</subject><subject>Safety</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Uncertainty</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj01OwzAYRC0EElXpBWCTCyT4N46XNKKAFAmJ0AUry7G_gKHEyHYX3J6WVojVzGLeSA-hS4IrQrC67tr-pa8oprhimDPayBM0o1yKknBRn_7r52iR0jvGmDRUYqpmSD759FEuw3Zy4Io2TDmGTbFOfnot-hzsm0nZ22JpYvQQi9V2stmHKV2gs9FsEiyOOUfr1e1ze192j3cP7U1XWkZILmvO2TAocNICZcKpAaRsFAEhwAjjGAgpHTacCgZ2FI3hNaiB70ZSWe7YHNHDr40hpQij_or-08RvTbDe2-tfe72310f7HXR1gDwA_AGKNjVXkv0ATbFWFA</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Yaghoubi, Shakiba</creator><creator>Majd, Keyvan</creator><creator>Fainekos, Georgios</creator><creator>Yamaguchi, Tomoya</creator><creator>Prokhorov, Danil</creator><creator>Hoxha, Bardh</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0456-2129</orcidid><orcidid>https://orcid.org/0000-0002-6208-4233</orcidid><orcidid>https://orcid.org/0000-0003-0996-5725</orcidid><orcidid>https://orcid.org/0000-0001-6255-7566</orcidid></search><sort><creationdate>202111</creationdate><title>Risk-Bounded Control Using Stochastic Barrier Functions</title><author>Yaghoubi, Shakiba ; Majd, Keyvan ; Fainekos, Georgios ; Yamaguchi, Tomoya ; Prokhorov, Danil ; Hoxha, Bardh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-6443bb9ed7ce235d9be77891e55ea5ad3e577d0a4253ecf58a46e9b477879c4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barrier function</topic><topic>Generators</topic><topic>Planning</topic><topic>Real-time systems</topic><topic>robotics</topic><topic>Safety</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaghoubi, Shakiba</creatorcontrib><creatorcontrib>Majd, Keyvan</creatorcontrib><creatorcontrib>Fainekos, Georgios</creatorcontrib><creatorcontrib>Yamaguchi, Tomoya</creatorcontrib><creatorcontrib>Prokhorov, Danil</creatorcontrib><creatorcontrib>Hoxha, Bardh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yaghoubi, Shakiba</au><au>Majd, Keyvan</au><au>Fainekos, Georgios</au><au>Yamaguchi, Tomoya</au><au>Prokhorov, Danil</au><au>Hoxha, Bardh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk-Bounded Control Using Stochastic Barrier Functions</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2021-11</date><risdate>2021</risdate><volume>5</volume><issue>5</issue><spage>1831</spage><epage>1836</epage><pages>1831-1836</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>In this letter, we design real-time controllers that react to uncertainties with stochastic characteristics and bound the probability of a failure in finite-time to a given desired value. Stochastic control barrier functions are used to derive sufficient conditions on the control input that bound the probability that the states of the system enter an unsafe region within a finite time. These conditions are combined with reachability conditions and used in an optimization problem to find the required control actions that lead the system to a goal set. We illustrate our theoretical development using a simulation of a lane-changing scenario in a highway with dense traffic.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2020.3043287</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0456-2129</orcidid><orcidid>https://orcid.org/0000-0002-6208-4233</orcidid><orcidid>https://orcid.org/0000-0003-0996-5725</orcidid><orcidid>https://orcid.org/0000-0001-6255-7566</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1456
ispartof IEEE control systems letters, 2021-11, Vol.5 (5), p.1831-1836
issn 2475-1456
2475-1456
language eng
recordid cdi_ieee_primary_9286497
source IEEE Electronic Library (IEL)
subjects Barrier function
Generators
Planning
Real-time systems
robotics
Safety
Stochastic processes
Stochastic systems
Uncertainty
title Risk-Bounded Control Using Stochastic Barrier Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk-Bounded%20Control%20Using%20Stochastic%20Barrier%20Functions&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Yaghoubi,%20Shakiba&rft.date=2021-11&rft.volume=5&rft.issue=5&rft.spage=1831&rft.epage=1836&rft.pages=1831-1836&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2020.3043287&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2020_3043287%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9286497&rfr_iscdi=true