Universal Frequency-Domain Analysis of N-Path Networks

N-path commutated capacitive networks provide a practical solution to implement highly sought on-chip high-Q filtering applications in which the use of lumped inductors is undesirable due to their significant footprints and low Q-factors. Recently, it has been also revealed that N-path networks can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2021-02, Vol.68 (2), p.569-580
Hauptverfasser: Tymchenko, Mykhailo, Nagulu, Aravind, Krishnaswamy, Harish, Alu, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 580
container_issue 2
container_start_page 569
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 68
creator Tymchenko, Mykhailo
Nagulu, Aravind
Krishnaswamy, Harish
Alu, Andrea
description N-path commutated capacitive networks provide a practical solution to implement highly sought on-chip high-Q filtering applications in which the use of lumped inductors is undesirable due to their significant footprints and low Q-factors. Recently, it has been also revealed that N-path networks can also exhibit other interesting functionalities, such as nonreciprocal phase-shifting and ultra-wideband true time delay, providing a path to miniaturization of various reciprocal and nonreciprocal devices. The analytical treatment of these networks, however, remains challenging, because their operation involves frequency mixing produced by the time modulation. In this article, we present a highly accurate frequency-domain approach for the analysis of N-path networks based on perturbation theory. Our method compares favorably to the state-of-the-art polyphase analysis by being much simpler mathematically, yet providing results essentially indistinguishable from numerical simulations, while offering physical insights into the N-path filter operation. We particularize the solution for the high-Q operation regime and obtain simple closed-form analytical expressions for harmonic transfer functions, scattering parameters and baseband impedance.
doi_str_mv 10.1109/TCSI.2020.3040592
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9284499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9284499</ieee_id><sourcerecordid>2478833937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3db652a10698dbbf369ddba30a0efbb510fb9752b750d2a1d12d0e6cd65431563</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwp-Jx5kzRp8jim08GYgttzSJoUO7t2Jp1j_96WDp_uffjO4fAhdE9gQgiop_XsczGhQGHCIAWu6AUaEc4lBgnisv9ThSWj8hrdxLgFoAoYGSGxqctfH6KpknnwPwdf5yf83OxMWSfT2lSnWMakKZIV_jDtV7Ly7bEJ3_EWXRWmiv7ufMdoM39Zz97w8v11MZsucU4VazFzVnBqCAglnbUFE8o5axgY8IW1nEBhVcapzTi4jnOEOvAid4KnjHDBxuhx6N2HphsXW71tDqHbFTVNMykZUyzrKDJQeWhiDL7Q-1DuTDhpArrXo3s9utejz3q6zMOQKb33_7yiMk2VYn_bHV_P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478833937</pqid></control><display><type>article</type><title>Universal Frequency-Domain Analysis of N-Path Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Tymchenko, Mykhailo ; Nagulu, Aravind ; Krishnaswamy, Harish ; Alu, Andrea</creator><creatorcontrib>Tymchenko, Mykhailo ; Nagulu, Aravind ; Krishnaswamy, Harish ; Alu, Andrea</creatorcontrib><description>N-path commutated capacitive networks provide a practical solution to implement highly sought on-chip high-Q filtering applications in which the use of lumped inductors is undesirable due to their significant footprints and low Q-factors. Recently, it has been also revealed that N-path networks can also exhibit other interesting functionalities, such as nonreciprocal phase-shifting and ultra-wideband true time delay, providing a path to miniaturization of various reciprocal and nonreciprocal devices. The analytical treatment of these networks, however, remains challenging, because their operation involves frequency mixing produced by the time modulation. In this article, we present a highly accurate frequency-domain approach for the analysis of N-path networks based on perturbation theory. Our method compares favorably to the state-of-the-art polyphase analysis by being much simpler mathematically, yet providing results essentially indistinguishable from numerical simulations, while offering physical insights into the N-path filter operation. We particularize the solution for the high-Q operation regime and obtain simple closed-form analytical expressions for harmonic transfer functions, scattering parameters and baseband impedance.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2020.3040592</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>band-pass filters ; Capacitors ; circuit analysis ; Delay effects ; Exact solutions ; Frequency analysis ; Frequency domain analysis ; Frequency modulation ; Harmonic analysis ; Harmonic functions ; Impedance ; Inductors ; Miniaturization ; Networks ; perturbation methods ; Perturbation theory ; Switched circuits ; Switches ; Time lag ; Transfer functions ; Ultrawideband</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2021-02, Vol.68 (2), p.569-580</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3db652a10698dbbf369ddba30a0efbb510fb9752b750d2a1d12d0e6cd65431563</citedby><cites>FETCH-LOGICAL-c293t-3db652a10698dbbf369ddba30a0efbb510fb9752b750d2a1d12d0e6cd65431563</cites><orcidid>0000-0002-1481-6137 ; 0000-0002-4297-5274 ; 0000-0002-6325-8872 ; 0000-0003-4156-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9284499$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9284499$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tymchenko, Mykhailo</creatorcontrib><creatorcontrib>Nagulu, Aravind</creatorcontrib><creatorcontrib>Krishnaswamy, Harish</creatorcontrib><creatorcontrib>Alu, Andrea</creatorcontrib><title>Universal Frequency-Domain Analysis of N-Path Networks</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>N-path commutated capacitive networks provide a practical solution to implement highly sought on-chip high-Q filtering applications in which the use of lumped inductors is undesirable due to their significant footprints and low Q-factors. Recently, it has been also revealed that N-path networks can also exhibit other interesting functionalities, such as nonreciprocal phase-shifting and ultra-wideband true time delay, providing a path to miniaturization of various reciprocal and nonreciprocal devices. The analytical treatment of these networks, however, remains challenging, because their operation involves frequency mixing produced by the time modulation. In this article, we present a highly accurate frequency-domain approach for the analysis of N-path networks based on perturbation theory. Our method compares favorably to the state-of-the-art polyphase analysis by being much simpler mathematically, yet providing results essentially indistinguishable from numerical simulations, while offering physical insights into the N-path filter operation. We particularize the solution for the high-Q operation regime and obtain simple closed-form analytical expressions for harmonic transfer functions, scattering parameters and baseband impedance.</description><subject>band-pass filters</subject><subject>Capacitors</subject><subject>circuit analysis</subject><subject>Delay effects</subject><subject>Exact solutions</subject><subject>Frequency analysis</subject><subject>Frequency domain analysis</subject><subject>Frequency modulation</subject><subject>Harmonic analysis</subject><subject>Harmonic functions</subject><subject>Impedance</subject><subject>Inductors</subject><subject>Miniaturization</subject><subject>Networks</subject><subject>perturbation methods</subject><subject>Perturbation theory</subject><subject>Switched circuits</subject><subject>Switches</subject><subject>Time lag</subject><subject>Transfer functions</subject><subject>Ultrawideband</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwp-Jx5kzRp8jim08GYgttzSJoUO7t2Jp1j_96WDp_uffjO4fAhdE9gQgiop_XsczGhQGHCIAWu6AUaEc4lBgnisv9ThSWj8hrdxLgFoAoYGSGxqctfH6KpknnwPwdf5yf83OxMWSfT2lSnWMakKZIV_jDtV7Ly7bEJ3_EWXRWmiv7ufMdoM39Zz97w8v11MZsucU4VazFzVnBqCAglnbUFE8o5axgY8IW1nEBhVcapzTi4jnOEOvAid4KnjHDBxuhx6N2HphsXW71tDqHbFTVNMykZUyzrKDJQeWhiDL7Q-1DuTDhpArrXo3s9utejz3q6zMOQKb33_7yiMk2VYn_bHV_P</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Tymchenko, Mykhailo</creator><creator>Nagulu, Aravind</creator><creator>Krishnaswamy, Harish</creator><creator>Alu, Andrea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1481-6137</orcidid><orcidid>https://orcid.org/0000-0002-4297-5274</orcidid><orcidid>https://orcid.org/0000-0002-6325-8872</orcidid><orcidid>https://orcid.org/0000-0003-4156-3531</orcidid></search><sort><creationdate>20210201</creationdate><title>Universal Frequency-Domain Analysis of N-Path Networks</title><author>Tymchenko, Mykhailo ; Nagulu, Aravind ; Krishnaswamy, Harish ; Alu, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3db652a10698dbbf369ddba30a0efbb510fb9752b750d2a1d12d0e6cd65431563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>band-pass filters</topic><topic>Capacitors</topic><topic>circuit analysis</topic><topic>Delay effects</topic><topic>Exact solutions</topic><topic>Frequency analysis</topic><topic>Frequency domain analysis</topic><topic>Frequency modulation</topic><topic>Harmonic analysis</topic><topic>Harmonic functions</topic><topic>Impedance</topic><topic>Inductors</topic><topic>Miniaturization</topic><topic>Networks</topic><topic>perturbation methods</topic><topic>Perturbation theory</topic><topic>Switched circuits</topic><topic>Switches</topic><topic>Time lag</topic><topic>Transfer functions</topic><topic>Ultrawideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tymchenko, Mykhailo</creatorcontrib><creatorcontrib>Nagulu, Aravind</creatorcontrib><creatorcontrib>Krishnaswamy, Harish</creatorcontrib><creatorcontrib>Alu, Andrea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tymchenko, Mykhailo</au><au>Nagulu, Aravind</au><au>Krishnaswamy, Harish</au><au>Alu, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal Frequency-Domain Analysis of N-Path Networks</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>68</volume><issue>2</issue><spage>569</spage><epage>580</epage><pages>569-580</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>N-path commutated capacitive networks provide a practical solution to implement highly sought on-chip high-Q filtering applications in which the use of lumped inductors is undesirable due to their significant footprints and low Q-factors. Recently, it has been also revealed that N-path networks can also exhibit other interesting functionalities, such as nonreciprocal phase-shifting and ultra-wideband true time delay, providing a path to miniaturization of various reciprocal and nonreciprocal devices. The analytical treatment of these networks, however, remains challenging, because their operation involves frequency mixing produced by the time modulation. In this article, we present a highly accurate frequency-domain approach for the analysis of N-path networks based on perturbation theory. Our method compares favorably to the state-of-the-art polyphase analysis by being much simpler mathematically, yet providing results essentially indistinguishable from numerical simulations, while offering physical insights into the N-path filter operation. We particularize the solution for the high-Q operation regime and obtain simple closed-form analytical expressions for harmonic transfer functions, scattering parameters and baseband impedance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2020.3040592</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1481-6137</orcidid><orcidid>https://orcid.org/0000-0002-4297-5274</orcidid><orcidid>https://orcid.org/0000-0002-6325-8872</orcidid><orcidid>https://orcid.org/0000-0003-4156-3531</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2021-02, Vol.68 (2), p.569-580
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_9284499
source IEEE Electronic Library (IEL)
subjects band-pass filters
Capacitors
circuit analysis
Delay effects
Exact solutions
Frequency analysis
Frequency domain analysis
Frequency modulation
Harmonic analysis
Harmonic functions
Impedance
Inductors
Miniaturization
Networks
perturbation methods
Perturbation theory
Switched circuits
Switches
Time lag
Transfer functions
Ultrawideband
title Universal Frequency-Domain Analysis of N-Path Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20Frequency-Domain%20Analysis%20of%20N-Path%20Networks&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Tymchenko,%20Mykhailo&rft.date=2021-02-01&rft.volume=68&rft.issue=2&rft.spage=569&rft.epage=580&rft.pages=569-580&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2020.3040592&rft_dat=%3Cproquest_RIE%3E2478833937%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478833937&rft_id=info:pmid/&rft_ieee_id=9284499&rfr_iscdi=true