Universal Frequency-Domain Analysis of N-Path Networks
N-path commutated capacitive networks provide a practical solution to implement highly sought on-chip high-Q filtering applications in which the use of lumped inductors is undesirable due to their significant footprints and low Q-factors. Recently, it has been also revealed that N-path networks can...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2021-02, Vol.68 (2), p.569-580 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 580 |
---|---|
container_issue | 2 |
container_start_page | 569 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 68 |
creator | Tymchenko, Mykhailo Nagulu, Aravind Krishnaswamy, Harish Alu, Andrea |
description | N-path commutated capacitive networks provide a practical solution to implement highly sought on-chip high-Q filtering applications in which the use of lumped inductors is undesirable due to their significant footprints and low Q-factors. Recently, it has been also revealed that N-path networks can also exhibit other interesting functionalities, such as nonreciprocal phase-shifting and ultra-wideband true time delay, providing a path to miniaturization of various reciprocal and nonreciprocal devices. The analytical treatment of these networks, however, remains challenging, because their operation involves frequency mixing produced by the time modulation. In this article, we present a highly accurate frequency-domain approach for the analysis of N-path networks based on perturbation theory. Our method compares favorably to the state-of-the-art polyphase analysis by being much simpler mathematically, yet providing results essentially indistinguishable from numerical simulations, while offering physical insights into the N-path filter operation. We particularize the solution for the high-Q operation regime and obtain simple closed-form analytical expressions for harmonic transfer functions, scattering parameters and baseband impedance. |
doi_str_mv | 10.1109/TCSI.2020.3040592 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9284499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9284499</ieee_id><sourcerecordid>2478833937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3db652a10698dbbf369ddba30a0efbb510fb9752b750d2a1d12d0e6cd65431563</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwp-Jx5kzRp8jim08GYgttzSJoUO7t2Jp1j_96WDp_uffjO4fAhdE9gQgiop_XsczGhQGHCIAWu6AUaEc4lBgnisv9ThSWj8hrdxLgFoAoYGSGxqctfH6KpknnwPwdf5yf83OxMWSfT2lSnWMakKZIV_jDtV7Ly7bEJ3_EWXRWmiv7ufMdoM39Zz97w8v11MZsucU4VazFzVnBqCAglnbUFE8o5axgY8IW1nEBhVcapzTi4jnOEOvAid4KnjHDBxuhx6N2HphsXW71tDqHbFTVNMykZUyzrKDJQeWhiDL7Q-1DuTDhpArrXo3s9utejz3q6zMOQKb33_7yiMk2VYn_bHV_P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478833937</pqid></control><display><type>article</type><title>Universal Frequency-Domain Analysis of N-Path Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Tymchenko, Mykhailo ; Nagulu, Aravind ; Krishnaswamy, Harish ; Alu, Andrea</creator><creatorcontrib>Tymchenko, Mykhailo ; Nagulu, Aravind ; Krishnaswamy, Harish ; Alu, Andrea</creatorcontrib><description>N-path commutated capacitive networks provide a practical solution to implement highly sought on-chip high-Q filtering applications in which the use of lumped inductors is undesirable due to their significant footprints and low Q-factors. Recently, it has been also revealed that N-path networks can also exhibit other interesting functionalities, such as nonreciprocal phase-shifting and ultra-wideband true time delay, providing a path to miniaturization of various reciprocal and nonreciprocal devices. The analytical treatment of these networks, however, remains challenging, because their operation involves frequency mixing produced by the time modulation. In this article, we present a highly accurate frequency-domain approach for the analysis of N-path networks based on perturbation theory. Our method compares favorably to the state-of-the-art polyphase analysis by being much simpler mathematically, yet providing results essentially indistinguishable from numerical simulations, while offering physical insights into the N-path filter operation. We particularize the solution for the high-Q operation regime and obtain simple closed-form analytical expressions for harmonic transfer functions, scattering parameters and baseband impedance.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2020.3040592</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>band-pass filters ; Capacitors ; circuit analysis ; Delay effects ; Exact solutions ; Frequency analysis ; Frequency domain analysis ; Frequency modulation ; Harmonic analysis ; Harmonic functions ; Impedance ; Inductors ; Miniaturization ; Networks ; perturbation methods ; Perturbation theory ; Switched circuits ; Switches ; Time lag ; Transfer functions ; Ultrawideband</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2021-02, Vol.68 (2), p.569-580</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3db652a10698dbbf369ddba30a0efbb510fb9752b750d2a1d12d0e6cd65431563</citedby><cites>FETCH-LOGICAL-c293t-3db652a10698dbbf369ddba30a0efbb510fb9752b750d2a1d12d0e6cd65431563</cites><orcidid>0000-0002-1481-6137 ; 0000-0002-4297-5274 ; 0000-0002-6325-8872 ; 0000-0003-4156-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9284499$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9284499$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tymchenko, Mykhailo</creatorcontrib><creatorcontrib>Nagulu, Aravind</creatorcontrib><creatorcontrib>Krishnaswamy, Harish</creatorcontrib><creatorcontrib>Alu, Andrea</creatorcontrib><title>Universal Frequency-Domain Analysis of N-Path Networks</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>N-path commutated capacitive networks provide a practical solution to implement highly sought on-chip high-Q filtering applications in which the use of lumped inductors is undesirable due to their significant footprints and low Q-factors. Recently, it has been also revealed that N-path networks can also exhibit other interesting functionalities, such as nonreciprocal phase-shifting and ultra-wideband true time delay, providing a path to miniaturization of various reciprocal and nonreciprocal devices. The analytical treatment of these networks, however, remains challenging, because their operation involves frequency mixing produced by the time modulation. In this article, we present a highly accurate frequency-domain approach for the analysis of N-path networks based on perturbation theory. Our method compares favorably to the state-of-the-art polyphase analysis by being much simpler mathematically, yet providing results essentially indistinguishable from numerical simulations, while offering physical insights into the N-path filter operation. We particularize the solution for the high-Q operation regime and obtain simple closed-form analytical expressions for harmonic transfer functions, scattering parameters and baseband impedance.</description><subject>band-pass filters</subject><subject>Capacitors</subject><subject>circuit analysis</subject><subject>Delay effects</subject><subject>Exact solutions</subject><subject>Frequency analysis</subject><subject>Frequency domain analysis</subject><subject>Frequency modulation</subject><subject>Harmonic analysis</subject><subject>Harmonic functions</subject><subject>Impedance</subject><subject>Inductors</subject><subject>Miniaturization</subject><subject>Networks</subject><subject>perturbation methods</subject><subject>Perturbation theory</subject><subject>Switched circuits</subject><subject>Switches</subject><subject>Time lag</subject><subject>Transfer functions</subject><subject>Ultrawideband</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwp-Jx5kzRp8jim08GYgttzSJoUO7t2Jp1j_96WDp_uffjO4fAhdE9gQgiop_XsczGhQGHCIAWu6AUaEc4lBgnisv9ThSWj8hrdxLgFoAoYGSGxqctfH6KpknnwPwdf5yf83OxMWSfT2lSnWMakKZIV_jDtV7Ly7bEJ3_EWXRWmiv7ufMdoM39Zz97w8v11MZsucU4VazFzVnBqCAglnbUFE8o5axgY8IW1nEBhVcapzTi4jnOEOvAid4KnjHDBxuhx6N2HphsXW71tDqHbFTVNMykZUyzrKDJQeWhiDL7Q-1DuTDhpArrXo3s9utejz3q6zMOQKb33_7yiMk2VYn_bHV_P</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Tymchenko, Mykhailo</creator><creator>Nagulu, Aravind</creator><creator>Krishnaswamy, Harish</creator><creator>Alu, Andrea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1481-6137</orcidid><orcidid>https://orcid.org/0000-0002-4297-5274</orcidid><orcidid>https://orcid.org/0000-0002-6325-8872</orcidid><orcidid>https://orcid.org/0000-0003-4156-3531</orcidid></search><sort><creationdate>20210201</creationdate><title>Universal Frequency-Domain Analysis of N-Path Networks</title><author>Tymchenko, Mykhailo ; Nagulu, Aravind ; Krishnaswamy, Harish ; Alu, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3db652a10698dbbf369ddba30a0efbb510fb9752b750d2a1d12d0e6cd65431563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>band-pass filters</topic><topic>Capacitors</topic><topic>circuit analysis</topic><topic>Delay effects</topic><topic>Exact solutions</topic><topic>Frequency analysis</topic><topic>Frequency domain analysis</topic><topic>Frequency modulation</topic><topic>Harmonic analysis</topic><topic>Harmonic functions</topic><topic>Impedance</topic><topic>Inductors</topic><topic>Miniaturization</topic><topic>Networks</topic><topic>perturbation methods</topic><topic>Perturbation theory</topic><topic>Switched circuits</topic><topic>Switches</topic><topic>Time lag</topic><topic>Transfer functions</topic><topic>Ultrawideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tymchenko, Mykhailo</creatorcontrib><creatorcontrib>Nagulu, Aravind</creatorcontrib><creatorcontrib>Krishnaswamy, Harish</creatorcontrib><creatorcontrib>Alu, Andrea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tymchenko, Mykhailo</au><au>Nagulu, Aravind</au><au>Krishnaswamy, Harish</au><au>Alu, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal Frequency-Domain Analysis of N-Path Networks</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>68</volume><issue>2</issue><spage>569</spage><epage>580</epage><pages>569-580</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>N-path commutated capacitive networks provide a practical solution to implement highly sought on-chip high-Q filtering applications in which the use of lumped inductors is undesirable due to their significant footprints and low Q-factors. Recently, it has been also revealed that N-path networks can also exhibit other interesting functionalities, such as nonreciprocal phase-shifting and ultra-wideband true time delay, providing a path to miniaturization of various reciprocal and nonreciprocal devices. The analytical treatment of these networks, however, remains challenging, because their operation involves frequency mixing produced by the time modulation. In this article, we present a highly accurate frequency-domain approach for the analysis of N-path networks based on perturbation theory. Our method compares favorably to the state-of-the-art polyphase analysis by being much simpler mathematically, yet providing results essentially indistinguishable from numerical simulations, while offering physical insights into the N-path filter operation. We particularize the solution for the high-Q operation regime and obtain simple closed-form analytical expressions for harmonic transfer functions, scattering parameters and baseband impedance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2020.3040592</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1481-6137</orcidid><orcidid>https://orcid.org/0000-0002-4297-5274</orcidid><orcidid>https://orcid.org/0000-0002-6325-8872</orcidid><orcidid>https://orcid.org/0000-0003-4156-3531</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2021-02, Vol.68 (2), p.569-580 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_ieee_primary_9284499 |
source | IEEE Electronic Library (IEL) |
subjects | band-pass filters Capacitors circuit analysis Delay effects Exact solutions Frequency analysis Frequency domain analysis Frequency modulation Harmonic analysis Harmonic functions Impedance Inductors Miniaturization Networks perturbation methods Perturbation theory Switched circuits Switches Time lag Transfer functions Ultrawideband |
title | Universal Frequency-Domain Analysis of N-Path Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20Frequency-Domain%20Analysis%20of%20N-Path%20Networks&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Tymchenko,%20Mykhailo&rft.date=2021-02-01&rft.volume=68&rft.issue=2&rft.spage=569&rft.epage=580&rft.pages=569-580&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2020.3040592&rft_dat=%3Cproquest_RIE%3E2478833937%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478833937&rft_id=info:pmid/&rft_ieee_id=9284499&rfr_iscdi=true |