Parameter Sharing Exploration and Hetero-Center Triplet Loss for Visible-Thermal Person Re-Identification
This paper focuses on the visible-thermal cross-modality person re-identification (VT Re-ID) task, whose goal is to match person images between the daytime visible modality and the nighttime thermal modality. The two-stream network is usually adopted to address the cross-modality discrepancy, the mo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2021, Vol.23, p.4414-4425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper focuses on the visible-thermal cross-modality person re-identification (VT Re-ID) task, whose goal is to match person images between the daytime visible modality and the nighttime thermal modality. The two-stream network is usually adopted to address the cross-modality discrepancy, the most challenging problem for VT Re-ID, by learning the multi-modality person features. In this paper, we explore how many parameters a two-stream network should share, which is still not well investigated in the existing literature. By splitting the ResNet50 model to construct the modality-specific feature extraction network and modality-sharing feature embedding network, we experimentally demonstrate the effect of parameter sharing of two-stream network for VT Re-ID. Moreover, in the framework of part-level person feature learning, we propose the hetero-center triplet loss to relax the strict constraint of traditional triplet loss by replacing the comparison of the anchor to all the other samples by the anchor center to all the other centers . With extremely simple means, the proposed method can significantly improve the VT Re-ID performance. The experimental results on two datasets show that our proposed method distinctly outperforms the state-of-the-art methods by large margins, especially on the RegDB dataset achieving superior performance, rank1/mAP/mINP 91.05%/83.28%/68.84%. It can be a new baseline for VT Re-ID, with a simple but effective strategy. |
---|---|
ISSN: | 1520-9210 1941-0077 |
DOI: | 10.1109/TMM.2020.3042080 |