A 96-MB 3D-Stacked SRAM Using Inductive Coupling With 0.4-V Transmitter, Termination Scheme and 12:1 SerDes in 40-nm CMOS
A 28.8-GB/s 96-MB 3D-stacked SRAM is presented. A total of eight SRAM dies, designed in a 40-nm CMOS process, are vertically stacked and connected using an inductive coupling wireless link with a low-voltage NMOS push-pull transmitter that reduces the power of the link by 35% with a 0.4-V power supp...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2021-02, Vol.68 (2), p.692-703 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 703 |
---|---|
container_issue | 2 |
container_start_page | 692 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 68 |
creator | Shiba, Kota Omori, Tatsuo Ueyoshi, Kodai Takamaeda-Yamazaki, Shinya Motomura, Masato Hamada, Mototsugu Kuroda, Tadahiro |
description | A 28.8-GB/s 96-MB 3D-stacked SRAM is presented. A total of eight SRAM dies, designed in a 40-nm CMOS process, are vertically stacked and connected using an inductive coupling wireless link with a low-voltage NMOS push-pull transmitter that reduces the power of the link by 35% with a 0.4-V power supply. The SRAM utilizes an inverted bit insertion scheme that compensates for the degradation of the first transmitted bit, a coil termination scheme that aims to eliminate the ringing of 3D inductive coupling bus, and a 12:1 SerDes that minimizes power consumption and area overhead in inductive coupling channels. Low-power, large-capacity, 3-cycle latency 3D-stacked SRAM for a DNN accelerator is achieved with the combination of these techniques to serve as a replacement of 3D-stacked DRAM. The performance of the proposed 3D-SRAM is compared with HBM DRAM and achieves more than 50% lower energy consumption. The scaling scenario of the SRAM module is discussed in light of the scaling of the inductive coupling technology and logic process. |
doi_str_mv | 10.1109/TCSI.2020.3037892 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9272691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9272691</ieee_id><sourcerecordid>2478833570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-21825a40723531b52bbbc74d018880adf7e3e3fc22ecdf8d43e4c0fabc3ed8393</originalsourceid><addsrcrecordid>eNo9kFFr2zAQx83oYG3aDzD2IthrlZ50diztLXW2NdAQmNPu0cjyeVFWy6nkDPLtF5PSp_tz_P538EuSzwKmQoC-2xTlcipBwhQBc6Xlh-RSZJnioGB2MeZUc4VSfUquYtwBSA0oLpPjnOkZX90zXPByMPYvNaz8NV-xp-j8H7b0zcEO7h-xoj_sX8bVbzdsGUxT_sw2wfjYuWGgcMs2FDrnzeB6z0q7pY6Y8Q0T8ptgJYUFReY8S4H7jhWrdXmdfGzNS6SbtzlJnn583xQP_HH9c1nMH7mVGgcuhZKZSSGXmKGoM1nXtc3TBoRSCkzT5oSErZWSbNOqJkVKLbSmtkiNQo2T5Ov57j70rweKQ7XrD8GfXlYyzZVCzHI4UeJM2dDHGKit9sF1JhwrAdVouBoNV6Ph6s3wqfPl3HFE9M5rmcuZFvgfOlNzbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478833570</pqid></control><display><type>article</type><title>A 96-MB 3D-Stacked SRAM Using Inductive Coupling With 0.4-V Transmitter, Termination Scheme and 12:1 SerDes in 40-nm CMOS</title><source>IEEE Electronic Library (IEL)</source><creator>Shiba, Kota ; Omori, Tatsuo ; Ueyoshi, Kodai ; Takamaeda-Yamazaki, Shinya ; Motomura, Masato ; Hamada, Mototsugu ; Kuroda, Tadahiro</creator><creatorcontrib>Shiba, Kota ; Omori, Tatsuo ; Ueyoshi, Kodai ; Takamaeda-Yamazaki, Shinya ; Motomura, Masato ; Hamada, Mototsugu ; Kuroda, Tadahiro</creatorcontrib><description>A 28.8-GB/s 96-MB 3D-stacked SRAM is presented. A total of eight SRAM dies, designed in a 40-nm CMOS process, are vertically stacked and connected using an inductive coupling wireless link with a low-voltage NMOS push-pull transmitter that reduces the power of the link by 35% with a 0.4-V power supply. The SRAM utilizes an inverted bit insertion scheme that compensates for the degradation of the first transmitted bit, a coil termination scheme that aims to eliminate the ringing of 3D inductive coupling bus, and a 12:1 SerDes that minimizes power consumption and area overhead in inductive coupling channels. Low-power, large-capacity, 3-cycle latency 3D-stacked SRAM for a DNN accelerator is achieved with the combination of these techniques to serve as a replacement of 3D-stacked DRAM. The performance of the proposed 3D-SRAM is compared with HBM DRAM and achieves more than 50% lower energy consumption. The scaling scenario of the SRAM module is discussed in light of the scaling of the inductive coupling technology and logic process.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2020.3037892</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D integration ; 3D memory architecture ; CMOS ; Coils ; Couplings ; deep neural networks (DNNs) ; Energy consumption ; Inductive coupling ; Metal oxide semiconductors ; Power consumption ; Power distribution ; Random access memory ; Static random access memory ; static random access memory (SRAM) ; Three-dimensional displays ; through silicon via (TSV) ; Through-silicon vias ; ThruChip interface (TCI) ; Transmitters ; Wireless communication</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2021-02, Vol.68 (2), p.692-703</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-21825a40723531b52bbbc74d018880adf7e3e3fc22ecdf8d43e4c0fabc3ed8393</citedby><cites>FETCH-LOGICAL-c293t-21825a40723531b52bbbc74d018880adf7e3e3fc22ecdf8d43e4c0fabc3ed8393</cites><orcidid>0000-0001-8804-7687 ; 0000-0002-0461-4208 ; 0000-0003-1543-1252 ; 0000-0002-7892-0443 ; 0000-0003-0617-1057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9272691$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9272691$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shiba, Kota</creatorcontrib><creatorcontrib>Omori, Tatsuo</creatorcontrib><creatorcontrib>Ueyoshi, Kodai</creatorcontrib><creatorcontrib>Takamaeda-Yamazaki, Shinya</creatorcontrib><creatorcontrib>Motomura, Masato</creatorcontrib><creatorcontrib>Hamada, Mototsugu</creatorcontrib><creatorcontrib>Kuroda, Tadahiro</creatorcontrib><title>A 96-MB 3D-Stacked SRAM Using Inductive Coupling With 0.4-V Transmitter, Termination Scheme and 12:1 SerDes in 40-nm CMOS</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>A 28.8-GB/s 96-MB 3D-stacked SRAM is presented. A total of eight SRAM dies, designed in a 40-nm CMOS process, are vertically stacked and connected using an inductive coupling wireless link with a low-voltage NMOS push-pull transmitter that reduces the power of the link by 35% with a 0.4-V power supply. The SRAM utilizes an inverted bit insertion scheme that compensates for the degradation of the first transmitted bit, a coil termination scheme that aims to eliminate the ringing of 3D inductive coupling bus, and a 12:1 SerDes that minimizes power consumption and area overhead in inductive coupling channels. Low-power, large-capacity, 3-cycle latency 3D-stacked SRAM for a DNN accelerator is achieved with the combination of these techniques to serve as a replacement of 3D-stacked DRAM. The performance of the proposed 3D-SRAM is compared with HBM DRAM and achieves more than 50% lower energy consumption. The scaling scenario of the SRAM module is discussed in light of the scaling of the inductive coupling technology and logic process.</description><subject>3D integration</subject><subject>3D memory architecture</subject><subject>CMOS</subject><subject>Coils</subject><subject>Couplings</subject><subject>deep neural networks (DNNs)</subject><subject>Energy consumption</subject><subject>Inductive coupling</subject><subject>Metal oxide semiconductors</subject><subject>Power consumption</subject><subject>Power distribution</subject><subject>Random access memory</subject><subject>Static random access memory</subject><subject>static random access memory (SRAM)</subject><subject>Three-dimensional displays</subject><subject>through silicon via (TSV)</subject><subject>Through-silicon vias</subject><subject>ThruChip interface (TCI)</subject><subject>Transmitters</subject><subject>Wireless communication</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFr2zAQx83oYG3aDzD2IthrlZ50diztLXW2NdAQmNPu0cjyeVFWy6nkDPLtF5PSp_tz_P538EuSzwKmQoC-2xTlcipBwhQBc6Xlh-RSZJnioGB2MeZUc4VSfUquYtwBSA0oLpPjnOkZX90zXPByMPYvNaz8NV-xp-j8H7b0zcEO7h-xoj_sX8bVbzdsGUxT_sw2wfjYuWGgcMs2FDrnzeB6z0q7pY6Y8Q0T8ptgJYUFReY8S4H7jhWrdXmdfGzNS6SbtzlJnn583xQP_HH9c1nMH7mVGgcuhZKZSSGXmKGoM1nXtc3TBoRSCkzT5oSErZWSbNOqJkVKLbSmtkiNQo2T5Ov57j70rweKQ7XrD8GfXlYyzZVCzHI4UeJM2dDHGKit9sF1JhwrAdVouBoNV6Ph6s3wqfPl3HFE9M5rmcuZFvgfOlNzbg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Shiba, Kota</creator><creator>Omori, Tatsuo</creator><creator>Ueyoshi, Kodai</creator><creator>Takamaeda-Yamazaki, Shinya</creator><creator>Motomura, Masato</creator><creator>Hamada, Mototsugu</creator><creator>Kuroda, Tadahiro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8804-7687</orcidid><orcidid>https://orcid.org/0000-0002-0461-4208</orcidid><orcidid>https://orcid.org/0000-0003-1543-1252</orcidid><orcidid>https://orcid.org/0000-0002-7892-0443</orcidid><orcidid>https://orcid.org/0000-0003-0617-1057</orcidid></search><sort><creationdate>20210201</creationdate><title>A 96-MB 3D-Stacked SRAM Using Inductive Coupling With 0.4-V Transmitter, Termination Scheme and 12:1 SerDes in 40-nm CMOS</title><author>Shiba, Kota ; Omori, Tatsuo ; Ueyoshi, Kodai ; Takamaeda-Yamazaki, Shinya ; Motomura, Masato ; Hamada, Mototsugu ; Kuroda, Tadahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-21825a40723531b52bbbc74d018880adf7e3e3fc22ecdf8d43e4c0fabc3ed8393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D integration</topic><topic>3D memory architecture</topic><topic>CMOS</topic><topic>Coils</topic><topic>Couplings</topic><topic>deep neural networks (DNNs)</topic><topic>Energy consumption</topic><topic>Inductive coupling</topic><topic>Metal oxide semiconductors</topic><topic>Power consumption</topic><topic>Power distribution</topic><topic>Random access memory</topic><topic>Static random access memory</topic><topic>static random access memory (SRAM)</topic><topic>Three-dimensional displays</topic><topic>through silicon via (TSV)</topic><topic>Through-silicon vias</topic><topic>ThruChip interface (TCI)</topic><topic>Transmitters</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiba, Kota</creatorcontrib><creatorcontrib>Omori, Tatsuo</creatorcontrib><creatorcontrib>Ueyoshi, Kodai</creatorcontrib><creatorcontrib>Takamaeda-Yamazaki, Shinya</creatorcontrib><creatorcontrib>Motomura, Masato</creatorcontrib><creatorcontrib>Hamada, Mototsugu</creatorcontrib><creatorcontrib>Kuroda, Tadahiro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shiba, Kota</au><au>Omori, Tatsuo</au><au>Ueyoshi, Kodai</au><au>Takamaeda-Yamazaki, Shinya</au><au>Motomura, Masato</au><au>Hamada, Mototsugu</au><au>Kuroda, Tadahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 96-MB 3D-Stacked SRAM Using Inductive Coupling With 0.4-V Transmitter, Termination Scheme and 12:1 SerDes in 40-nm CMOS</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>68</volume><issue>2</issue><spage>692</spage><epage>703</epage><pages>692-703</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>A 28.8-GB/s 96-MB 3D-stacked SRAM is presented. A total of eight SRAM dies, designed in a 40-nm CMOS process, are vertically stacked and connected using an inductive coupling wireless link with a low-voltage NMOS push-pull transmitter that reduces the power of the link by 35% with a 0.4-V power supply. The SRAM utilizes an inverted bit insertion scheme that compensates for the degradation of the first transmitted bit, a coil termination scheme that aims to eliminate the ringing of 3D inductive coupling bus, and a 12:1 SerDes that minimizes power consumption and area overhead in inductive coupling channels. Low-power, large-capacity, 3-cycle latency 3D-stacked SRAM for a DNN accelerator is achieved with the combination of these techniques to serve as a replacement of 3D-stacked DRAM. The performance of the proposed 3D-SRAM is compared with HBM DRAM and achieves more than 50% lower energy consumption. The scaling scenario of the SRAM module is discussed in light of the scaling of the inductive coupling technology and logic process.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2020.3037892</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8804-7687</orcidid><orcidid>https://orcid.org/0000-0002-0461-4208</orcidid><orcidid>https://orcid.org/0000-0003-1543-1252</orcidid><orcidid>https://orcid.org/0000-0002-7892-0443</orcidid><orcidid>https://orcid.org/0000-0003-0617-1057</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2021-02, Vol.68 (2), p.692-703 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_ieee_primary_9272691 |
source | IEEE Electronic Library (IEL) |
subjects | 3D integration 3D memory architecture CMOS Coils Couplings deep neural networks (DNNs) Energy consumption Inductive coupling Metal oxide semiconductors Power consumption Power distribution Random access memory Static random access memory static random access memory (SRAM) Three-dimensional displays through silicon via (TSV) Through-silicon vias ThruChip interface (TCI) Transmitters Wireless communication |
title | A 96-MB 3D-Stacked SRAM Using Inductive Coupling With 0.4-V Transmitter, Termination Scheme and 12:1 SerDes in 40-nm CMOS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2096-MB%203D-Stacked%20SRAM%20Using%20Inductive%20Coupling%20With%200.4-V%20Transmitter,%20Termination%20Scheme%20and%2012:1%20SerDes%20in%2040-nm%20CMOS&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Shiba,%20Kota&rft.date=2021-02-01&rft.volume=68&rft.issue=2&rft.spage=692&rft.epage=703&rft.pages=692-703&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2020.3037892&rft_dat=%3Cproquest_RIE%3E2478833570%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478833570&rft_id=info:pmid/&rft_ieee_id=9272691&rfr_iscdi=true |