Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations

This paper proposes a regularized blind deconvolution method for restoring Poissonian blurred image. The problem is formulated by utilizing the {L}_{0} -norm of image gradients and total variation (TV) to regularize the latent image and point spread function (PSF), respectively, and combining them...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2021-01, Vol.30, p.1030-1043
Hauptverfasser: Dong, Wende, Tao, Shuyin, Xu, Guili, Chen, Yueting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1043
container_issue
container_start_page 1030
container_title IEEE transactions on image processing
container_volume 30
creator Dong, Wende
Tao, Shuyin
Xu, Guili
Chen, Yueting
description This paper proposes a regularized blind deconvolution method for restoring Poissonian blurred image. The problem is formulated by utilizing the {L}_{0} -norm of image gradients and total variation (TV) to regularize the latent image and point spread function (PSF), respectively, and combining them with the negative logarithmic Poisson log-likelihood. To solve the problem, we propose an approach which combines the methods of variable splitting and Lagrange multiplier to convert the original problem into three sub-problems, and then design an alternating minimization algorithm which incorporates the estimation of PSF and latent image as well as the updation of Lagrange multiplier into account. We also design a non-blind deconvolution method based on TV regularization to further improve the quality of the restored image. Experimental results on both synthetic and real-world Poissonian blurred images show that the proposed method can achieve restored images of very high quality, which is competitive with or even better than some state of the art methods.
doi_str_mv 10.1109/TIP.2020.3038518
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9269468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9269468</ieee_id><sourcerecordid>2464188422</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-462c469a2c0f0c10d2b1e9531fc5646f1414bb74668acc7f06641425d47f93353</originalsourceid><addsrcrecordid>eNotkD1PwzAYhC0EoqWwI7F4ZEl5_REnHmkLpVIFFSowRq7jFFdOXOwECX49Uct0p9NzNxxC1wTGhIC8Wy9WYwoUxgxYnpL8BA2J5CQB4PS095BmSUa4HKCLGHcAhKdEnKMBY5RRysQQ7SbONiWeGe2bb--61voGVz7glbcx-saqBk9cF4Ip8aJWW4M_bPuJ175VDr-rYNWhofqNJSTPPtR4HlRpTdPiV7PtXI_8Hph4ic4q5aK5-tcRent8WE-fkuXLfDG9XyaWQt4mXFDNhVRUQwWaQEk3xMiUkUqngouKcMI3m4wLkSutswqE6BOaljyrJGMpG6Hb4-4--K_OxLaobdTGOdUY38WC8r6Q57w_YIRujqg1xhT7YGsVfgpJheQiZ3_QgGYC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464188422</pqid></control><display><type>article</type><title>Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Wende ; Tao, Shuyin ; Xu, Guili ; Chen, Yueting</creator><creatorcontrib>Dong, Wende ; Tao, Shuyin ; Xu, Guili ; Chen, Yueting</creatorcontrib><description>This paper proposes a regularized blind deconvolution method for restoring Poissonian blurred image. The problem is formulated by utilizing the &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{L}_{0} &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm of image gradients and total variation (TV) to regularize the latent image and point spread function (PSF), respectively, and combining them with the negative logarithmic Poisson log-likelihood. To solve the problem, we propose an approach which combines the methods of variable splitting and Lagrange multiplier to convert the original problem into three sub-problems, and then design an alternating minimization algorithm which incorporates the estimation of PSF and latent image as well as the updation of Lagrange multiplier into account. We also design a non-blind deconvolution method based on TV regularization to further improve the quality of the restored image. Experimental results on both synthetic and real-world Poissonian blurred images show that the proposed method can achieve restored images of very high quality, which is competitive with or even better than some state of the art methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2020.3038518</identifier><identifier>PMID: 33232236</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L ₀-norm gradient regularization ; Blind image deconvolution ; Deconvolution ; Estimation ; Image restoration ; Iterative methods ; Mathematical model ; Minimization ; Poissonian blurred image ; total variation regularization</subject><ispartof>IEEE transactions on image processing, 2021-01, Vol.30, p.1030-1043</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2759-9784 ; 0000-0002-1410-2521 ; 0000-0002-3569-8141 ; 0000-0002-3179-4283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9269468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9269468$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Wende</creatorcontrib><creatorcontrib>Tao, Shuyin</creatorcontrib><creatorcontrib>Xu, Guili</creatorcontrib><creatorcontrib>Chen, Yueting</creatorcontrib><title>Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>This paper proposes a regularized blind deconvolution method for restoring Poissonian blurred image. The problem is formulated by utilizing the &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{L}_{0} &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm of image gradients and total variation (TV) to regularize the latent image and point spread function (PSF), respectively, and combining them with the negative logarithmic Poisson log-likelihood. To solve the problem, we propose an approach which combines the methods of variable splitting and Lagrange multiplier to convert the original problem into three sub-problems, and then design an alternating minimization algorithm which incorporates the estimation of PSF and latent image as well as the updation of Lagrange multiplier into account. We also design a non-blind deconvolution method based on TV regularization to further improve the quality of the restored image. Experimental results on both synthetic and real-world Poissonian blurred images show that the proposed method can achieve restored images of very high quality, which is competitive with or even better than some state of the art methods.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L ₀-norm gradient regularization</subject><subject>Blind image deconvolution</subject><subject>Deconvolution</subject><subject>Estimation</subject><subject>Image restoration</subject><subject>Iterative methods</subject><subject>Mathematical model</subject><subject>Minimization</subject><subject>Poissonian blurred image</subject><subject>total variation regularization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotkD1PwzAYhC0EoqWwI7F4ZEl5_REnHmkLpVIFFSowRq7jFFdOXOwECX49Uct0p9NzNxxC1wTGhIC8Wy9WYwoUxgxYnpL8BA2J5CQB4PS095BmSUa4HKCLGHcAhKdEnKMBY5RRysQQ7SbONiWeGe2bb--61voGVz7glbcx-saqBk9cF4Ip8aJWW4M_bPuJ175VDr-rYNWhofqNJSTPPtR4HlRpTdPiV7PtXI_8Hph4ic4q5aK5-tcRent8WE-fkuXLfDG9XyaWQt4mXFDNhVRUQwWaQEk3xMiUkUqngouKcMI3m4wLkSutswqE6BOaljyrJGMpG6Hb4-4--K_OxLaobdTGOdUY38WC8r6Q57w_YIRujqg1xhT7YGsVfgpJheQiZ3_QgGYC</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Dong, Wende</creator><creator>Tao, Shuyin</creator><creator>Xu, Guili</creator><creator>Chen, Yueting</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2759-9784</orcidid><orcidid>https://orcid.org/0000-0002-1410-2521</orcidid><orcidid>https://orcid.org/0000-0002-3569-8141</orcidid><orcidid>https://orcid.org/0000-0002-3179-4283</orcidid></search><sort><creationdate>20210101</creationdate><title>Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations</title><author>Dong, Wende ; Tao, Shuyin ; Xu, Guili ; Chen, Yueting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-462c469a2c0f0c10d2b1e9531fc5646f1414bb74668acc7f06641425d47f93353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L ₀-norm gradient regularization</topic><topic>Blind image deconvolution</topic><topic>Deconvolution</topic><topic>Estimation</topic><topic>Image restoration</topic><topic>Iterative methods</topic><topic>Mathematical model</topic><topic>Minimization</topic><topic>Poissonian blurred image</topic><topic>total variation regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Wende</creatorcontrib><creatorcontrib>Tao, Shuyin</creatorcontrib><creatorcontrib>Xu, Guili</creatorcontrib><creatorcontrib>Chen, Yueting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Wende</au><au>Tao, Shuyin</au><au>Xu, Guili</au><au>Chen, Yueting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>30</volume><spage>1030</spage><epage>1043</epage><pages>1030-1043</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper proposes a regularized blind deconvolution method for restoring Poissonian blurred image. The problem is formulated by utilizing the &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{L}_{0} &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm of image gradients and total variation (TV) to regularize the latent image and point spread function (PSF), respectively, and combining them with the negative logarithmic Poisson log-likelihood. To solve the problem, we propose an approach which combines the methods of variable splitting and Lagrange multiplier to convert the original problem into three sub-problems, and then design an alternating minimization algorithm which incorporates the estimation of PSF and latent image as well as the updation of Lagrange multiplier into account. We also design a non-blind deconvolution method based on TV regularization to further improve the quality of the restored image. Experimental results on both synthetic and real-world Poissonian blurred images show that the proposed method can achieve restored images of very high quality, which is competitive with or even better than some state of the art methods.</abstract><pub>IEEE</pub><pmid>33232236</pmid><doi>10.1109/TIP.2020.3038518</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2759-9784</orcidid><orcidid>https://orcid.org/0000-0002-1410-2521</orcidid><orcidid>https://orcid.org/0000-0002-3569-8141</orcidid><orcidid>https://orcid.org/0000-0002-3179-4283</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2021-01, Vol.30, p.1030-1043
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_9269468
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L ₀-norm gradient regularization
Blind image deconvolution
Deconvolution
Estimation
Image restoration
Iterative methods
Mathematical model
Minimization
Poissonian blurred image
total variation regularization
title Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20Deconvolution%20for%20Poissonian%20Blurred%20Image%20With%20Total%20Variation%20and%20L0-Norm%20Gradient%20Regularizations&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Dong,%20Wende&rft.date=2021-01-01&rft.volume=30&rft.spage=1030&rft.epage=1043&rft.pages=1030-1043&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2020.3038518&rft_dat=%3Cproquest_RIE%3E2464188422%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464188422&rft_id=info:pmid/33232236&rft_ieee_id=9269468&rfr_iscdi=true