Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations
This paper proposes a regularized blind deconvolution method for restoring Poissonian blurred image. The problem is formulated by utilizing the {L}_{0} -norm of image gradients and total variation (TV) to regularize the latent image and point spread function (PSF), respectively, and combining them...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2021-01, Vol.30, p.1030-1043 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1043 |
---|---|
container_issue | |
container_start_page | 1030 |
container_title | IEEE transactions on image processing |
container_volume | 30 |
creator | Dong, Wende Tao, Shuyin Xu, Guili Chen, Yueting |
description | This paper proposes a regularized blind deconvolution method for restoring Poissonian blurred image. The problem is formulated by utilizing the {L}_{0} -norm of image gradients and total variation (TV) to regularize the latent image and point spread function (PSF), respectively, and combining them with the negative logarithmic Poisson log-likelihood. To solve the problem, we propose an approach which combines the methods of variable splitting and Lagrange multiplier to convert the original problem into three sub-problems, and then design an alternating minimization algorithm which incorporates the estimation of PSF and latent image as well as the updation of Lagrange multiplier into account. We also design a non-blind deconvolution method based on TV regularization to further improve the quality of the restored image. Experimental results on both synthetic and real-world Poissonian blurred images show that the proposed method can achieve restored images of very high quality, which is competitive with or even better than some state of the art methods. |
doi_str_mv | 10.1109/TIP.2020.3038518 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9269468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9269468</ieee_id><sourcerecordid>2464188422</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-462c469a2c0f0c10d2b1e9531fc5646f1414bb74668acc7f06641425d47f93353</originalsourceid><addsrcrecordid>eNotkD1PwzAYhC0EoqWwI7F4ZEl5_REnHmkLpVIFFSowRq7jFFdOXOwECX49Uct0p9NzNxxC1wTGhIC8Wy9WYwoUxgxYnpL8BA2J5CQB4PS095BmSUa4HKCLGHcAhKdEnKMBY5RRysQQ7SbONiWeGe2bb--61voGVz7glbcx-saqBk9cF4Ip8aJWW4M_bPuJ175VDr-rYNWhofqNJSTPPtR4HlRpTdPiV7PtXI_8Hph4ic4q5aK5-tcRent8WE-fkuXLfDG9XyaWQt4mXFDNhVRUQwWaQEk3xMiUkUqngouKcMI3m4wLkSutswqE6BOaljyrJGMpG6Hb4-4--K_OxLaobdTGOdUY38WC8r6Q57w_YIRujqg1xhT7YGsVfgpJheQiZ3_QgGYC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464188422</pqid></control><display><type>article</type><title>Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Wende ; Tao, Shuyin ; Xu, Guili ; Chen, Yueting</creator><creatorcontrib>Dong, Wende ; Tao, Shuyin ; Xu, Guili ; Chen, Yueting</creatorcontrib><description>This paper proposes a regularized blind deconvolution method for restoring Poissonian blurred image. The problem is formulated by utilizing the <inline-formula> <tex-math notation="LaTeX">{L}_{0} </tex-math></inline-formula>-norm of image gradients and total variation (TV) to regularize the latent image and point spread function (PSF), respectively, and combining them with the negative logarithmic Poisson log-likelihood. To solve the problem, we propose an approach which combines the methods of variable splitting and Lagrange multiplier to convert the original problem into three sub-problems, and then design an alternating minimization algorithm which incorporates the estimation of PSF and latent image as well as the updation of Lagrange multiplier into account. We also design a non-blind deconvolution method based on TV regularization to further improve the quality of the restored image. Experimental results on both synthetic and real-world Poissonian blurred images show that the proposed method can achieve restored images of very high quality, which is competitive with or even better than some state of the art methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2020.3038518</identifier><identifier>PMID: 33232236</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L ₀-norm gradient regularization ; Blind image deconvolution ; Deconvolution ; Estimation ; Image restoration ; Iterative methods ; Mathematical model ; Minimization ; Poissonian blurred image ; total variation regularization</subject><ispartof>IEEE transactions on image processing, 2021-01, Vol.30, p.1030-1043</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2759-9784 ; 0000-0002-1410-2521 ; 0000-0002-3569-8141 ; 0000-0002-3179-4283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9269468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9269468$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Wende</creatorcontrib><creatorcontrib>Tao, Shuyin</creatorcontrib><creatorcontrib>Xu, Guili</creatorcontrib><creatorcontrib>Chen, Yueting</creatorcontrib><title>Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>This paper proposes a regularized blind deconvolution method for restoring Poissonian blurred image. The problem is formulated by utilizing the <inline-formula> <tex-math notation="LaTeX">{L}_{0} </tex-math></inline-formula>-norm of image gradients and total variation (TV) to regularize the latent image and point spread function (PSF), respectively, and combining them with the negative logarithmic Poisson log-likelihood. To solve the problem, we propose an approach which combines the methods of variable splitting and Lagrange multiplier to convert the original problem into three sub-problems, and then design an alternating minimization algorithm which incorporates the estimation of PSF and latent image as well as the updation of Lagrange multiplier into account. We also design a non-blind deconvolution method based on TV regularization to further improve the quality of the restored image. Experimental results on both synthetic and real-world Poissonian blurred images show that the proposed method can achieve restored images of very high quality, which is competitive with or even better than some state of the art methods.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L ₀-norm gradient regularization</subject><subject>Blind image deconvolution</subject><subject>Deconvolution</subject><subject>Estimation</subject><subject>Image restoration</subject><subject>Iterative methods</subject><subject>Mathematical model</subject><subject>Minimization</subject><subject>Poissonian blurred image</subject><subject>total variation regularization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotkD1PwzAYhC0EoqWwI7F4ZEl5_REnHmkLpVIFFSowRq7jFFdOXOwECX49Uct0p9NzNxxC1wTGhIC8Wy9WYwoUxgxYnpL8BA2J5CQB4PS095BmSUa4HKCLGHcAhKdEnKMBY5RRysQQ7SbONiWeGe2bb--61voGVz7glbcx-saqBk9cF4Ip8aJWW4M_bPuJ175VDr-rYNWhofqNJSTPPtR4HlRpTdPiV7PtXI_8Hph4ic4q5aK5-tcRent8WE-fkuXLfDG9XyaWQt4mXFDNhVRUQwWaQEk3xMiUkUqngouKcMI3m4wLkSutswqE6BOaljyrJGMpG6Hb4-4--K_OxLaobdTGOdUY38WC8r6Q57w_YIRujqg1xhT7YGsVfgpJheQiZ3_QgGYC</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Dong, Wende</creator><creator>Tao, Shuyin</creator><creator>Xu, Guili</creator><creator>Chen, Yueting</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2759-9784</orcidid><orcidid>https://orcid.org/0000-0002-1410-2521</orcidid><orcidid>https://orcid.org/0000-0002-3569-8141</orcidid><orcidid>https://orcid.org/0000-0002-3179-4283</orcidid></search><sort><creationdate>20210101</creationdate><title>Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations</title><author>Dong, Wende ; Tao, Shuyin ; Xu, Guili ; Chen, Yueting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-462c469a2c0f0c10d2b1e9531fc5646f1414bb74668acc7f06641425d47f93353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L ₀-norm gradient regularization</topic><topic>Blind image deconvolution</topic><topic>Deconvolution</topic><topic>Estimation</topic><topic>Image restoration</topic><topic>Iterative methods</topic><topic>Mathematical model</topic><topic>Minimization</topic><topic>Poissonian blurred image</topic><topic>total variation regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Wende</creatorcontrib><creatorcontrib>Tao, Shuyin</creatorcontrib><creatorcontrib>Xu, Guili</creatorcontrib><creatorcontrib>Chen, Yueting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Wende</au><au>Tao, Shuyin</au><au>Xu, Guili</au><au>Chen, Yueting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>30</volume><spage>1030</spage><epage>1043</epage><pages>1030-1043</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper proposes a regularized blind deconvolution method for restoring Poissonian blurred image. The problem is formulated by utilizing the <inline-formula> <tex-math notation="LaTeX">{L}_{0} </tex-math></inline-formula>-norm of image gradients and total variation (TV) to regularize the latent image and point spread function (PSF), respectively, and combining them with the negative logarithmic Poisson log-likelihood. To solve the problem, we propose an approach which combines the methods of variable splitting and Lagrange multiplier to convert the original problem into three sub-problems, and then design an alternating minimization algorithm which incorporates the estimation of PSF and latent image as well as the updation of Lagrange multiplier into account. We also design a non-blind deconvolution method based on TV regularization to further improve the quality of the restored image. Experimental results on both synthetic and real-world Poissonian blurred images show that the proposed method can achieve restored images of very high quality, which is competitive with or even better than some state of the art methods.</abstract><pub>IEEE</pub><pmid>33232236</pmid><doi>10.1109/TIP.2020.3038518</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2759-9784</orcidid><orcidid>https://orcid.org/0000-0002-1410-2521</orcidid><orcidid>https://orcid.org/0000-0002-3569-8141</orcidid><orcidid>https://orcid.org/0000-0002-3179-4283</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2021-01, Vol.30, p.1030-1043 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_9269468 |
source | IEEE Electronic Library (IEL) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L ₀-norm gradient regularization Blind image deconvolution Deconvolution Estimation Image restoration Iterative methods Mathematical model Minimization Poissonian blurred image total variation regularization |
title | Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20Deconvolution%20for%20Poissonian%20Blurred%20Image%20With%20Total%20Variation%20and%20L0-Norm%20Gradient%20Regularizations&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Dong,%20Wende&rft.date=2021-01-01&rft.volume=30&rft.spage=1030&rft.epage=1043&rft.pages=1030-1043&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2020.3038518&rft_dat=%3Cproquest_RIE%3E2464188422%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464188422&rft_id=info:pmid/33232236&rft_ieee_id=9269468&rfr_iscdi=true |