Sufficient Conditions for Robust Frequency Stability of AC Power Systems
This paper analyses the frequency stability of ac grids in the presence of non-dispatchable generation and stochastic loads. Its main goal is to evaluate conditions in which the system is robust to large, persistent active power disturbances without recurring to time-domain simulations. Considering...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2021-05, Vol.36 (3), p.2684-2692 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2692 |
---|---|
container_issue | 3 |
container_start_page | 2684 |
container_title | IEEE transactions on power systems |
container_volume | 36 |
creator | Alves, Erick Bergna-Diaz, Gilbert Brandao, Danilo Tedeschi, Elisabetta |
description | This paper analyses the frequency stability of ac grids in the presence of non-dispatchable generation and stochastic loads. Its main goal is to evaluate conditions in which the system is robust to large, persistent active power disturbances without recurring to time-domain simulations. Considering the ongoing energy transition to more renewable sources, defining robustness boundaries is a key topic for power system planning and operation. However, much of the research on long-term studies has not dealt with robust dynamic constraints, while short-term analyses usually depend on time-consuming simulations to evaluate nonlinearities. To bridge this gap, the authors derive an algebraic equation that provides sufficient conditions for robust frequency stability in ac power systems and a relationship among four key quantities: the maximum active power perturbation, the minimum system damping, the steady-state and the transient frequency limits. To achieve this goal, it uses a nonlinear average-model of the ac grid and Lyapunov's direct method extended by perturbation analysis requiring only limited knowledge of the system parameters. The algebraic calculations are validated using time-domain simulations of the IEEE 39-bus test system and results are compared to the traditional Swing Equation model. |
doi_str_mv | 10.1109/TPWRS.2020.3039832 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9269441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9269441</ieee_id><sourcerecordid>2515850056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-6d69c5fbafee376b765f7309c4b9d82f3307bc779c9b8a0dc2f1e5e14982a8ed3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcvoDcBrztPkiZNLkdxThg41omXpU0T6NiamaRI397ODa_Oxfm__xw-hB4JzAgB9bJdf22KGQUKMwZMSUav0IRwLhMQmbpGE5CSJ1JxuEV3IewAQIyLCVoWvbWtbk0Xce66po2t6wK2zuONq_sQ8cKb7950esBFrOp238YBO4vnOV67H-NxMYRoDuEe3dhqH8zDZU7R5-J1my-T1cfbez5fJZpJGRPRCKW5rStrDMtEnQluMwZKp7VqJLWMQVbrLFNa1bKCRlNLDDckVZJW0jRsip7PvUfvxr9CLHeu9914sqSccMkBuBhT9JzS3oXgjS2Pvj1UfigJlCdj5Z-x8mSsvBgboacz1Bpj_gFFhUpTwn4BzrNoAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515850056</pqid></control><display><type>article</type><title>Sufficient Conditions for Robust Frequency Stability of AC Power Systems</title><source>IEEE Xplore</source><creator>Alves, Erick ; Bergna-Diaz, Gilbert ; Brandao, Danilo ; Tedeschi, Elisabetta</creator><creatorcontrib>Alves, Erick ; Bergna-Diaz, Gilbert ; Brandao, Danilo ; Tedeschi, Elisabetta</creatorcontrib><description>This paper analyses the frequency stability of ac grids in the presence of non-dispatchable generation and stochastic loads. Its main goal is to evaluate conditions in which the system is robust to large, persistent active power disturbances without recurring to time-domain simulations. Considering the ongoing energy transition to more renewable sources, defining robustness boundaries is a key topic for power system planning and operation. However, much of the research on long-term studies has not dealt with robust dynamic constraints, while short-term analyses usually depend on time-consuming simulations to evaluate nonlinearities. To bridge this gap, the authors derive an algebraic equation that provides sufficient conditions for robust frequency stability in ac power systems and a relationship among four key quantities: the maximum active power perturbation, the minimum system damping, the steady-state and the transient frequency limits. To achieve this goal, it uses a nonlinear average-model of the ac grid and Lyapunov's direct method extended by perturbation analysis requiring only limited knowledge of the system parameters. The algebraic calculations are validated using time-domain simulations of the IEEE 39-bus test system and results are compared to the traditional Swing Equation model.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2020.3039832</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active damping ; Algebra ; Damping ; Frequency analysis ; Frequency stability ; Liapunov direct method ; Load modeling ; Lyapunov methods ; Mathematical model ; Nonlinearity ; Perturbation methods ; Power system dynamics ; power system planning ; power system simulation ; Power system stability ; Robustness ; Simulation ; Stability analysis ; Stability criteria ; Time domain analysis</subject><ispartof>IEEE transactions on power systems, 2021-05, Vol.36 (3), p.2684-2692</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-6d69c5fbafee376b765f7309c4b9d82f3307bc779c9b8a0dc2f1e5e14982a8ed3</citedby><cites>FETCH-LOGICAL-c388t-6d69c5fbafee376b765f7309c4b9d82f3307bc779c9b8a0dc2f1e5e14982a8ed3</cites><orcidid>0000-0001-9664-879X ; 0000-0002-5878-1167 ; 0000-0002-6185-4910 ; 0000-0002-7827-0380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9269441$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Alves, Erick</creatorcontrib><creatorcontrib>Bergna-Diaz, Gilbert</creatorcontrib><creatorcontrib>Brandao, Danilo</creatorcontrib><creatorcontrib>Tedeschi, Elisabetta</creatorcontrib><title>Sufficient Conditions for Robust Frequency Stability of AC Power Systems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper analyses the frequency stability of ac grids in the presence of non-dispatchable generation and stochastic loads. Its main goal is to evaluate conditions in which the system is robust to large, persistent active power disturbances without recurring to time-domain simulations. Considering the ongoing energy transition to more renewable sources, defining robustness boundaries is a key topic for power system planning and operation. However, much of the research on long-term studies has not dealt with robust dynamic constraints, while short-term analyses usually depend on time-consuming simulations to evaluate nonlinearities. To bridge this gap, the authors derive an algebraic equation that provides sufficient conditions for robust frequency stability in ac power systems and a relationship among four key quantities: the maximum active power perturbation, the minimum system damping, the steady-state and the transient frequency limits. To achieve this goal, it uses a nonlinear average-model of the ac grid and Lyapunov's direct method extended by perturbation analysis requiring only limited knowledge of the system parameters. The algebraic calculations are validated using time-domain simulations of the IEEE 39-bus test system and results are compared to the traditional Swing Equation model.</description><subject>Active damping</subject><subject>Algebra</subject><subject>Damping</subject><subject>Frequency analysis</subject><subject>Frequency stability</subject><subject>Liapunov direct method</subject><subject>Load modeling</subject><subject>Lyapunov methods</subject><subject>Mathematical model</subject><subject>Nonlinearity</subject><subject>Perturbation methods</subject><subject>Power system dynamics</subject><subject>power system planning</subject><subject>power system simulation</subject><subject>Power system stability</subject><subject>Robustness</subject><subject>Simulation</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Time domain analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcvoDcBrztPkiZNLkdxThg41omXpU0T6NiamaRI397ODa_Oxfm__xw-hB4JzAgB9bJdf22KGQUKMwZMSUav0IRwLhMQmbpGE5CSJ1JxuEV3IewAQIyLCVoWvbWtbk0Xce66po2t6wK2zuONq_sQ8cKb7950esBFrOp238YBO4vnOV67H-NxMYRoDuEe3dhqH8zDZU7R5-J1my-T1cfbez5fJZpJGRPRCKW5rStrDMtEnQluMwZKp7VqJLWMQVbrLFNa1bKCRlNLDDckVZJW0jRsip7PvUfvxr9CLHeu9914sqSccMkBuBhT9JzS3oXgjS2Pvj1UfigJlCdj5Z-x8mSsvBgboacz1Bpj_gFFhUpTwn4BzrNoAw</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Alves, Erick</creator><creator>Bergna-Diaz, Gilbert</creator><creator>Brandao, Danilo</creator><creator>Tedeschi, Elisabetta</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9664-879X</orcidid><orcidid>https://orcid.org/0000-0002-5878-1167</orcidid><orcidid>https://orcid.org/0000-0002-6185-4910</orcidid><orcidid>https://orcid.org/0000-0002-7827-0380</orcidid></search><sort><creationdate>202105</creationdate><title>Sufficient Conditions for Robust Frequency Stability of AC Power Systems</title><author>Alves, Erick ; Bergna-Diaz, Gilbert ; Brandao, Danilo ; Tedeschi, Elisabetta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-6d69c5fbafee376b765f7309c4b9d82f3307bc779c9b8a0dc2f1e5e14982a8ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active damping</topic><topic>Algebra</topic><topic>Damping</topic><topic>Frequency analysis</topic><topic>Frequency stability</topic><topic>Liapunov direct method</topic><topic>Load modeling</topic><topic>Lyapunov methods</topic><topic>Mathematical model</topic><topic>Nonlinearity</topic><topic>Perturbation methods</topic><topic>Power system dynamics</topic><topic>power system planning</topic><topic>power system simulation</topic><topic>Power system stability</topic><topic>Robustness</topic><topic>Simulation</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Erick</creatorcontrib><creatorcontrib>Bergna-Diaz, Gilbert</creatorcontrib><creatorcontrib>Brandao, Danilo</creatorcontrib><creatorcontrib>Tedeschi, Elisabetta</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Erick</au><au>Bergna-Diaz, Gilbert</au><au>Brandao, Danilo</au><au>Tedeschi, Elisabetta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficient Conditions for Robust Frequency Stability of AC Power Systems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2021-05</date><risdate>2021</risdate><volume>36</volume><issue>3</issue><spage>2684</spage><epage>2692</epage><pages>2684-2692</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper analyses the frequency stability of ac grids in the presence of non-dispatchable generation and stochastic loads. Its main goal is to evaluate conditions in which the system is robust to large, persistent active power disturbances without recurring to time-domain simulations. Considering the ongoing energy transition to more renewable sources, defining robustness boundaries is a key topic for power system planning and operation. However, much of the research on long-term studies has not dealt with robust dynamic constraints, while short-term analyses usually depend on time-consuming simulations to evaluate nonlinearities. To bridge this gap, the authors derive an algebraic equation that provides sufficient conditions for robust frequency stability in ac power systems and a relationship among four key quantities: the maximum active power perturbation, the minimum system damping, the steady-state and the transient frequency limits. To achieve this goal, it uses a nonlinear average-model of the ac grid and Lyapunov's direct method extended by perturbation analysis requiring only limited knowledge of the system parameters. The algebraic calculations are validated using time-domain simulations of the IEEE 39-bus test system and results are compared to the traditional Swing Equation model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2020.3039832</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9664-879X</orcidid><orcidid>https://orcid.org/0000-0002-5878-1167</orcidid><orcidid>https://orcid.org/0000-0002-6185-4910</orcidid><orcidid>https://orcid.org/0000-0002-7827-0380</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2021-05, Vol.36 (3), p.2684-2692 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_ieee_primary_9269441 |
source | IEEE Xplore |
subjects | Active damping Algebra Damping Frequency analysis Frequency stability Liapunov direct method Load modeling Lyapunov methods Mathematical model Nonlinearity Perturbation methods Power system dynamics power system planning power system simulation Power system stability Robustness Simulation Stability analysis Stability criteria Time domain analysis |
title | Sufficient Conditions for Robust Frequency Stability of AC Power Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficient%20Conditions%20for%20Robust%20Frequency%20Stability%20of%20AC%20Power%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Alves,%20Erick&rft.date=2021-05&rft.volume=36&rft.issue=3&rft.spage=2684&rft.epage=2692&rft.pages=2684-2692&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2020.3039832&rft_dat=%3Cproquest_ieee_%3E2515850056%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515850056&rft_id=info:pmid/&rft_ieee_id=9269441&rfr_iscdi=true |