Bridgeless Hybrid-Mode Zeta-Based Inverter: Dynamic Modeling and Control

In this article, we present a bridgeless hybrid-mode Zeta inverter for distributed energy systems. We integrate the secondary diode of the conventional unfolding-type Zeta inverter into one of diagonal pairs of the secondary-side switches in a bridgeless Zeta inverter. This structure decreases the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2021-06, Vol.36 (6), p.7233-7249
Hauptverfasser: Han, Byeongcheol, Jo, Seung-Won, Kim, Nam-Gyeong, Lai, Jih-Sheng, Kim, Minsung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7249
container_issue 6
container_start_page 7233
container_title IEEE transactions on power electronics
container_volume 36
creator Han, Byeongcheol
Jo, Seung-Won
Kim, Nam-Gyeong
Lai, Jih-Sheng
Kim, Minsung
description In this article, we present a bridgeless hybrid-mode Zeta inverter for distributed energy systems. We integrate the secondary diode of the conventional unfolding-type Zeta inverter into one of diagonal pairs of the secondary-side switches in a bridgeless Zeta inverter. This structure decreases the number of active power components and provides naturally well distributed loss at the body diodes of the secondary-side switches over one cycle of grid voltage, and as a result, increases both output power transfer and reliability. To attain medium-high power capacity with appropriate size of magnetic components, the bridgeless Zeta inverter operates in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). However, control of the proposed inverter is difficult because of the distinct system dynamics caused by the operations in DCM and CCM. To deal with this control problem, we first identify the mode boundaries and, corresponding to each mode, develop a dynamic model to design a controller. Then, we propose to use a feedback controller plus a feedforward controller supplemented with a repetitive controller that uses a phase-lead compensator. Experimental results using a 300-W prototype demonstrate the feasibility and effectiveness of the proposed modeling and control approach.
doi_str_mv 10.1109/TPEL.2020.3040113
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9268468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9268468</ieee_id><sourcerecordid>2487438093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-133dcb40c759d373d55cdc00aad216668d13ab8c133ffd6373c149f3405df12e3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwEXE99L8nMJO7sh7ZQ0UXduAlpkilTpjM1mQr9987Q4upx4dz74BByjzBCBPW0-pwtRwwYjDgIQOQXZIBKYAII-SUZgJRpIpXi1-Qmxi0AihRwQObjULqNr3yMdH5cdyF5b5yn3741ydhE7-ii_vWh9eGZTo-12ZWW9kRV1htqakcnTd2GprolV4Wpor873yH5ep2tJvNk-fG2mLwsE8sUbxPk3Nm1AJunyvGcuzS1zgIY4xhmWSYdcrOWtuOKwmUdYVGoggtIXYHM8yF5PO3uQ_Nz8LHV2-YQ6u6lZkLmgktQvKPwRNnQxBh8ofeh3Jlw1Ai6F6Z7YboXps_Cus7DqVN67_95xTIpMsn_AFhFZYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487438093</pqid></control><display><type>article</type><title>Bridgeless Hybrid-Mode Zeta-Based Inverter: Dynamic Modeling and Control</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Byeongcheol ; Jo, Seung-Won ; Kim, Nam-Gyeong ; Lai, Jih-Sheng ; Kim, Minsung</creator><creatorcontrib>Han, Byeongcheol ; Jo, Seung-Won ; Kim, Nam-Gyeong ; Lai, Jih-Sheng ; Kim, Minsung</creatorcontrib><description>In this article, we present a bridgeless hybrid-mode Zeta inverter for distributed energy systems. We integrate the secondary diode of the conventional unfolding-type Zeta inverter into one of diagonal pairs of the secondary-side switches in a bridgeless Zeta inverter. This structure decreases the number of active power components and provides naturally well distributed loss at the body diodes of the secondary-side switches over one cycle of grid voltage, and as a result, increases both output power transfer and reliability. To attain medium-high power capacity with appropriate size of magnetic components, the bridgeless Zeta inverter operates in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). However, control of the proposed inverter is difficult because of the distinct system dynamics caused by the operations in DCM and CCM. To deal with this control problem, we first identify the mode boundaries and, corresponding to each mode, develop a dynamic model to design a controller. Then, we propose to use a feedback controller plus a feedforward controller supplemented with a repetitive controller that uses a phase-lead compensator. Experimental results using a 300-W prototype demonstrate the feasibility and effectiveness of the proposed modeling and control approach.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2020.3040113</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bridgeless inverter ; Capacitors ; Component reliability ; continuous conduction mode (CCM) ; Control systems design ; discontinuous conduction mode (DCM) ; Distributed generation ; Dynamic models ; Feedback control ; Feedforward control ; Heat sinks ; Inductors ; Inverters ; Microwave integrated circuits ; Modelling ; phase-lead compensator ; Power transfer ; repetitive control ; Repetitive controllers ; Switches ; System dynamics ; Topology ; Zeta topology</subject><ispartof>IEEE transactions on power electronics, 2021-06, Vol.36 (6), p.7233-7249</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-133dcb40c759d373d55cdc00aad216668d13ab8c133ffd6373c149f3405df12e3</citedby><cites>FETCH-LOGICAL-c293t-133dcb40c759d373d55cdc00aad216668d13ab8c133ffd6373c149f3405df12e3</cites><orcidid>0000-0002-5136-5478 ; 0000-0002-5348-5713 ; 0000-0001-7770-2025 ; 0000-0001-9354-6528 ; 0000-0003-2315-8460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9268468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9268468$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Byeongcheol</creatorcontrib><creatorcontrib>Jo, Seung-Won</creatorcontrib><creatorcontrib>Kim, Nam-Gyeong</creatorcontrib><creatorcontrib>Lai, Jih-Sheng</creatorcontrib><creatorcontrib>Kim, Minsung</creatorcontrib><title>Bridgeless Hybrid-Mode Zeta-Based Inverter: Dynamic Modeling and Control</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>In this article, we present a bridgeless hybrid-mode Zeta inverter for distributed energy systems. We integrate the secondary diode of the conventional unfolding-type Zeta inverter into one of diagonal pairs of the secondary-side switches in a bridgeless Zeta inverter. This structure decreases the number of active power components and provides naturally well distributed loss at the body diodes of the secondary-side switches over one cycle of grid voltage, and as a result, increases both output power transfer and reliability. To attain medium-high power capacity with appropriate size of magnetic components, the bridgeless Zeta inverter operates in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). However, control of the proposed inverter is difficult because of the distinct system dynamics caused by the operations in DCM and CCM. To deal with this control problem, we first identify the mode boundaries and, corresponding to each mode, develop a dynamic model to design a controller. Then, we propose to use a feedback controller plus a feedforward controller supplemented with a repetitive controller that uses a phase-lead compensator. Experimental results using a 300-W prototype demonstrate the feasibility and effectiveness of the proposed modeling and control approach.</description><subject>Bridgeless inverter</subject><subject>Capacitors</subject><subject>Component reliability</subject><subject>continuous conduction mode (CCM)</subject><subject>Control systems design</subject><subject>discontinuous conduction mode (DCM)</subject><subject>Distributed generation</subject><subject>Dynamic models</subject><subject>Feedback control</subject><subject>Feedforward control</subject><subject>Heat sinks</subject><subject>Inductors</subject><subject>Inverters</subject><subject>Microwave integrated circuits</subject><subject>Modelling</subject><subject>phase-lead compensator</subject><subject>Power transfer</subject><subject>repetitive control</subject><subject>Repetitive controllers</subject><subject>Switches</subject><subject>System dynamics</subject><subject>Topology</subject><subject>Zeta topology</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKs_QNwEXE99L8nMJO7sh7ZQ0UXduAlpkilTpjM1mQr9987Q4upx4dz74BByjzBCBPW0-pwtRwwYjDgIQOQXZIBKYAII-SUZgJRpIpXi1-Qmxi0AihRwQObjULqNr3yMdH5cdyF5b5yn3741ydhE7-ii_vWh9eGZTo-12ZWW9kRV1htqakcnTd2GprolV4Wpor873yH5ep2tJvNk-fG2mLwsE8sUbxPk3Nm1AJunyvGcuzS1zgIY4xhmWSYdcrOWtuOKwmUdYVGoggtIXYHM8yF5PO3uQ_Nz8LHV2-YQ6u6lZkLmgktQvKPwRNnQxBh8ofeh3Jlw1Ai6F6Z7YboXps_Cus7DqVN67_95xTIpMsn_AFhFZYg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Han, Byeongcheol</creator><creator>Jo, Seung-Won</creator><creator>Kim, Nam-Gyeong</creator><creator>Lai, Jih-Sheng</creator><creator>Kim, Minsung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5136-5478</orcidid><orcidid>https://orcid.org/0000-0002-5348-5713</orcidid><orcidid>https://orcid.org/0000-0001-7770-2025</orcidid><orcidid>https://orcid.org/0000-0001-9354-6528</orcidid><orcidid>https://orcid.org/0000-0003-2315-8460</orcidid></search><sort><creationdate>20210601</creationdate><title>Bridgeless Hybrid-Mode Zeta-Based Inverter: Dynamic Modeling and Control</title><author>Han, Byeongcheol ; Jo, Seung-Won ; Kim, Nam-Gyeong ; Lai, Jih-Sheng ; Kim, Minsung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-133dcb40c759d373d55cdc00aad216668d13ab8c133ffd6373c149f3405df12e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bridgeless inverter</topic><topic>Capacitors</topic><topic>Component reliability</topic><topic>continuous conduction mode (CCM)</topic><topic>Control systems design</topic><topic>discontinuous conduction mode (DCM)</topic><topic>Distributed generation</topic><topic>Dynamic models</topic><topic>Feedback control</topic><topic>Feedforward control</topic><topic>Heat sinks</topic><topic>Inductors</topic><topic>Inverters</topic><topic>Microwave integrated circuits</topic><topic>Modelling</topic><topic>phase-lead compensator</topic><topic>Power transfer</topic><topic>repetitive control</topic><topic>Repetitive controllers</topic><topic>Switches</topic><topic>System dynamics</topic><topic>Topology</topic><topic>Zeta topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Byeongcheol</creatorcontrib><creatorcontrib>Jo, Seung-Won</creatorcontrib><creatorcontrib>Kim, Nam-Gyeong</creatorcontrib><creatorcontrib>Lai, Jih-Sheng</creatorcontrib><creatorcontrib>Kim, Minsung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Byeongcheol</au><au>Jo, Seung-Won</au><au>Kim, Nam-Gyeong</au><au>Lai, Jih-Sheng</au><au>Kim, Minsung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridgeless Hybrid-Mode Zeta-Based Inverter: Dynamic Modeling and Control</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>36</volume><issue>6</issue><spage>7233</spage><epage>7249</epage><pages>7233-7249</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>In this article, we present a bridgeless hybrid-mode Zeta inverter for distributed energy systems. We integrate the secondary diode of the conventional unfolding-type Zeta inverter into one of diagonal pairs of the secondary-side switches in a bridgeless Zeta inverter. This structure decreases the number of active power components and provides naturally well distributed loss at the body diodes of the secondary-side switches over one cycle of grid voltage, and as a result, increases both output power transfer and reliability. To attain medium-high power capacity with appropriate size of magnetic components, the bridgeless Zeta inverter operates in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). However, control of the proposed inverter is difficult because of the distinct system dynamics caused by the operations in DCM and CCM. To deal with this control problem, we first identify the mode boundaries and, corresponding to each mode, develop a dynamic model to design a controller. Then, we propose to use a feedback controller plus a feedforward controller supplemented with a repetitive controller that uses a phase-lead compensator. Experimental results using a 300-W prototype demonstrate the feasibility and effectiveness of the proposed modeling and control approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2020.3040113</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5136-5478</orcidid><orcidid>https://orcid.org/0000-0002-5348-5713</orcidid><orcidid>https://orcid.org/0000-0001-7770-2025</orcidid><orcidid>https://orcid.org/0000-0001-9354-6528</orcidid><orcidid>https://orcid.org/0000-0003-2315-8460</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2021-06, Vol.36 (6), p.7233-7249
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_9268468
source IEEE Electronic Library (IEL)
subjects Bridgeless inverter
Capacitors
Component reliability
continuous conduction mode (CCM)
Control systems design
discontinuous conduction mode (DCM)
Distributed generation
Dynamic models
Feedback control
Feedforward control
Heat sinks
Inductors
Inverters
Microwave integrated circuits
Modelling
phase-lead compensator
Power transfer
repetitive control
Repetitive controllers
Switches
System dynamics
Topology
Zeta topology
title Bridgeless Hybrid-Mode Zeta-Based Inverter: Dynamic Modeling and Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridgeless%20Hybrid-Mode%20Zeta-Based%20Inverter:%20Dynamic%20Modeling%20and%20Control&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Han,%20Byeongcheol&rft.date=2021-06-01&rft.volume=36&rft.issue=6&rft.spage=7233&rft.epage=7249&rft.pages=7233-7249&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2020.3040113&rft_dat=%3Cproquest_RIE%3E2487438093%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487438093&rft_id=info:pmid/&rft_ieee_id=9268468&rfr_iscdi=true