Bridgeless Hybrid-Mode Zeta-Based Inverter: Dynamic Modeling and Control
In this article, we present a bridgeless hybrid-mode Zeta inverter for distributed energy systems. We integrate the secondary diode of the conventional unfolding-type Zeta inverter into one of diagonal pairs of the secondary-side switches in a bridgeless Zeta inverter. This structure decreases the n...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2021-06, Vol.36 (6), p.7233-7249 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7249 |
---|---|
container_issue | 6 |
container_start_page | 7233 |
container_title | IEEE transactions on power electronics |
container_volume | 36 |
creator | Han, Byeongcheol Jo, Seung-Won Kim, Nam-Gyeong Lai, Jih-Sheng Kim, Minsung |
description | In this article, we present a bridgeless hybrid-mode Zeta inverter for distributed energy systems. We integrate the secondary diode of the conventional unfolding-type Zeta inverter into one of diagonal pairs of the secondary-side switches in a bridgeless Zeta inverter. This structure decreases the number of active power components and provides naturally well distributed loss at the body diodes of the secondary-side switches over one cycle of grid voltage, and as a result, increases both output power transfer and reliability. To attain medium-high power capacity with appropriate size of magnetic components, the bridgeless Zeta inverter operates in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). However, control of the proposed inverter is difficult because of the distinct system dynamics caused by the operations in DCM and CCM. To deal with this control problem, we first identify the mode boundaries and, corresponding to each mode, develop a dynamic model to design a controller. Then, we propose to use a feedback controller plus a feedforward controller supplemented with a repetitive controller that uses a phase-lead compensator. Experimental results using a 300-W prototype demonstrate the feasibility and effectiveness of the proposed modeling and control approach. |
doi_str_mv | 10.1109/TPEL.2020.3040113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9268468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9268468</ieee_id><sourcerecordid>2487438093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-133dcb40c759d373d55cdc00aad216668d13ab8c133ffd6373c149f3405df12e3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwEXE99L8nMJO7sh7ZQ0UXduAlpkilTpjM1mQr9987Q4upx4dz74BByjzBCBPW0-pwtRwwYjDgIQOQXZIBKYAII-SUZgJRpIpXi1-Qmxi0AihRwQObjULqNr3yMdH5cdyF5b5yn3741ydhE7-ii_vWh9eGZTo-12ZWW9kRV1htqakcnTd2GprolV4Wpor873yH5ep2tJvNk-fG2mLwsE8sUbxPk3Nm1AJunyvGcuzS1zgIY4xhmWSYdcrOWtuOKwmUdYVGoggtIXYHM8yF5PO3uQ_Nz8LHV2-YQ6u6lZkLmgktQvKPwRNnQxBh8ofeh3Jlw1Ai6F6Z7YboXps_Cus7DqVN67_95xTIpMsn_AFhFZYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487438093</pqid></control><display><type>article</type><title>Bridgeless Hybrid-Mode Zeta-Based Inverter: Dynamic Modeling and Control</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Byeongcheol ; Jo, Seung-Won ; Kim, Nam-Gyeong ; Lai, Jih-Sheng ; Kim, Minsung</creator><creatorcontrib>Han, Byeongcheol ; Jo, Seung-Won ; Kim, Nam-Gyeong ; Lai, Jih-Sheng ; Kim, Minsung</creatorcontrib><description>In this article, we present a bridgeless hybrid-mode Zeta inverter for distributed energy systems. We integrate the secondary diode of the conventional unfolding-type Zeta inverter into one of diagonal pairs of the secondary-side switches in a bridgeless Zeta inverter. This structure decreases the number of active power components and provides naturally well distributed loss at the body diodes of the secondary-side switches over one cycle of grid voltage, and as a result, increases both output power transfer and reliability. To attain medium-high power capacity with appropriate size of magnetic components, the bridgeless Zeta inverter operates in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). However, control of the proposed inverter is difficult because of the distinct system dynamics caused by the operations in DCM and CCM. To deal with this control problem, we first identify the mode boundaries and, corresponding to each mode, develop a dynamic model to design a controller. Then, we propose to use a feedback controller plus a feedforward controller supplemented with a repetitive controller that uses a phase-lead compensator. Experimental results using a 300-W prototype demonstrate the feasibility and effectiveness of the proposed modeling and control approach.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2020.3040113</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bridgeless inverter ; Capacitors ; Component reliability ; continuous conduction mode (CCM) ; Control systems design ; discontinuous conduction mode (DCM) ; Distributed generation ; Dynamic models ; Feedback control ; Feedforward control ; Heat sinks ; Inductors ; Inverters ; Microwave integrated circuits ; Modelling ; phase-lead compensator ; Power transfer ; repetitive control ; Repetitive controllers ; Switches ; System dynamics ; Topology ; Zeta topology</subject><ispartof>IEEE transactions on power electronics, 2021-06, Vol.36 (6), p.7233-7249</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-133dcb40c759d373d55cdc00aad216668d13ab8c133ffd6373c149f3405df12e3</citedby><cites>FETCH-LOGICAL-c293t-133dcb40c759d373d55cdc00aad216668d13ab8c133ffd6373c149f3405df12e3</cites><orcidid>0000-0002-5136-5478 ; 0000-0002-5348-5713 ; 0000-0001-7770-2025 ; 0000-0001-9354-6528 ; 0000-0003-2315-8460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9268468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9268468$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Byeongcheol</creatorcontrib><creatorcontrib>Jo, Seung-Won</creatorcontrib><creatorcontrib>Kim, Nam-Gyeong</creatorcontrib><creatorcontrib>Lai, Jih-Sheng</creatorcontrib><creatorcontrib>Kim, Minsung</creatorcontrib><title>Bridgeless Hybrid-Mode Zeta-Based Inverter: Dynamic Modeling and Control</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>In this article, we present a bridgeless hybrid-mode Zeta inverter for distributed energy systems. We integrate the secondary diode of the conventional unfolding-type Zeta inverter into one of diagonal pairs of the secondary-side switches in a bridgeless Zeta inverter. This structure decreases the number of active power components and provides naturally well distributed loss at the body diodes of the secondary-side switches over one cycle of grid voltage, and as a result, increases both output power transfer and reliability. To attain medium-high power capacity with appropriate size of magnetic components, the bridgeless Zeta inverter operates in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). However, control of the proposed inverter is difficult because of the distinct system dynamics caused by the operations in DCM and CCM. To deal with this control problem, we first identify the mode boundaries and, corresponding to each mode, develop a dynamic model to design a controller. Then, we propose to use a feedback controller plus a feedforward controller supplemented with a repetitive controller that uses a phase-lead compensator. Experimental results using a 300-W prototype demonstrate the feasibility and effectiveness of the proposed modeling and control approach.</description><subject>Bridgeless inverter</subject><subject>Capacitors</subject><subject>Component reliability</subject><subject>continuous conduction mode (CCM)</subject><subject>Control systems design</subject><subject>discontinuous conduction mode (DCM)</subject><subject>Distributed generation</subject><subject>Dynamic models</subject><subject>Feedback control</subject><subject>Feedforward control</subject><subject>Heat sinks</subject><subject>Inductors</subject><subject>Inverters</subject><subject>Microwave integrated circuits</subject><subject>Modelling</subject><subject>phase-lead compensator</subject><subject>Power transfer</subject><subject>repetitive control</subject><subject>Repetitive controllers</subject><subject>Switches</subject><subject>System dynamics</subject><subject>Topology</subject><subject>Zeta topology</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKs_QNwEXE99L8nMJO7sh7ZQ0UXduAlpkilTpjM1mQr9987Q4upx4dz74BByjzBCBPW0-pwtRwwYjDgIQOQXZIBKYAII-SUZgJRpIpXi1-Qmxi0AihRwQObjULqNr3yMdH5cdyF5b5yn3741ydhE7-ii_vWh9eGZTo-12ZWW9kRV1htqakcnTd2GprolV4Wpor873yH5ep2tJvNk-fG2mLwsE8sUbxPk3Nm1AJunyvGcuzS1zgIY4xhmWSYdcrOWtuOKwmUdYVGoggtIXYHM8yF5PO3uQ_Nz8LHV2-YQ6u6lZkLmgktQvKPwRNnQxBh8ofeh3Jlw1Ai6F6Z7YboXps_Cus7DqVN67_95xTIpMsn_AFhFZYg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Han, Byeongcheol</creator><creator>Jo, Seung-Won</creator><creator>Kim, Nam-Gyeong</creator><creator>Lai, Jih-Sheng</creator><creator>Kim, Minsung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5136-5478</orcidid><orcidid>https://orcid.org/0000-0002-5348-5713</orcidid><orcidid>https://orcid.org/0000-0001-7770-2025</orcidid><orcidid>https://orcid.org/0000-0001-9354-6528</orcidid><orcidid>https://orcid.org/0000-0003-2315-8460</orcidid></search><sort><creationdate>20210601</creationdate><title>Bridgeless Hybrid-Mode Zeta-Based Inverter: Dynamic Modeling and Control</title><author>Han, Byeongcheol ; Jo, Seung-Won ; Kim, Nam-Gyeong ; Lai, Jih-Sheng ; Kim, Minsung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-133dcb40c759d373d55cdc00aad216668d13ab8c133ffd6373c149f3405df12e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bridgeless inverter</topic><topic>Capacitors</topic><topic>Component reliability</topic><topic>continuous conduction mode (CCM)</topic><topic>Control systems design</topic><topic>discontinuous conduction mode (DCM)</topic><topic>Distributed generation</topic><topic>Dynamic models</topic><topic>Feedback control</topic><topic>Feedforward control</topic><topic>Heat sinks</topic><topic>Inductors</topic><topic>Inverters</topic><topic>Microwave integrated circuits</topic><topic>Modelling</topic><topic>phase-lead compensator</topic><topic>Power transfer</topic><topic>repetitive control</topic><topic>Repetitive controllers</topic><topic>Switches</topic><topic>System dynamics</topic><topic>Topology</topic><topic>Zeta topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Byeongcheol</creatorcontrib><creatorcontrib>Jo, Seung-Won</creatorcontrib><creatorcontrib>Kim, Nam-Gyeong</creatorcontrib><creatorcontrib>Lai, Jih-Sheng</creatorcontrib><creatorcontrib>Kim, Minsung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Byeongcheol</au><au>Jo, Seung-Won</au><au>Kim, Nam-Gyeong</au><au>Lai, Jih-Sheng</au><au>Kim, Minsung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridgeless Hybrid-Mode Zeta-Based Inverter: Dynamic Modeling and Control</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>36</volume><issue>6</issue><spage>7233</spage><epage>7249</epage><pages>7233-7249</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>In this article, we present a bridgeless hybrid-mode Zeta inverter for distributed energy systems. We integrate the secondary diode of the conventional unfolding-type Zeta inverter into one of diagonal pairs of the secondary-side switches in a bridgeless Zeta inverter. This structure decreases the number of active power components and provides naturally well distributed loss at the body diodes of the secondary-side switches over one cycle of grid voltage, and as a result, increases both output power transfer and reliability. To attain medium-high power capacity with appropriate size of magnetic components, the bridgeless Zeta inverter operates in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). However, control of the proposed inverter is difficult because of the distinct system dynamics caused by the operations in DCM and CCM. To deal with this control problem, we first identify the mode boundaries and, corresponding to each mode, develop a dynamic model to design a controller. Then, we propose to use a feedback controller plus a feedforward controller supplemented with a repetitive controller that uses a phase-lead compensator. Experimental results using a 300-W prototype demonstrate the feasibility and effectiveness of the proposed modeling and control approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2020.3040113</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5136-5478</orcidid><orcidid>https://orcid.org/0000-0002-5348-5713</orcidid><orcidid>https://orcid.org/0000-0001-7770-2025</orcidid><orcidid>https://orcid.org/0000-0001-9354-6528</orcidid><orcidid>https://orcid.org/0000-0003-2315-8460</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2021-06, Vol.36 (6), p.7233-7249 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_9268468 |
source | IEEE Electronic Library (IEL) |
subjects | Bridgeless inverter Capacitors Component reliability continuous conduction mode (CCM) Control systems design discontinuous conduction mode (DCM) Distributed generation Dynamic models Feedback control Feedforward control Heat sinks Inductors Inverters Microwave integrated circuits Modelling phase-lead compensator Power transfer repetitive control Repetitive controllers Switches System dynamics Topology Zeta topology |
title | Bridgeless Hybrid-Mode Zeta-Based Inverter: Dynamic Modeling and Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridgeless%20Hybrid-Mode%20Zeta-Based%20Inverter:%20Dynamic%20Modeling%20and%20Control&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Han,%20Byeongcheol&rft.date=2021-06-01&rft.volume=36&rft.issue=6&rft.spage=7233&rft.epage=7249&rft.pages=7233-7249&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2020.3040113&rft_dat=%3Cproquest_RIE%3E2487438093%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487438093&rft_id=info:pmid/&rft_ieee_id=9268468&rfr_iscdi=true |