A Pedestrian Network Construction System Based on Crowdsourced Walking Trajectories

With the promotion of low-carbon travel, pedestrian network plays an important role in many location-based applications, such as pedestrian navigation and refined traffic management. Due to the lack of systematic data acquisition mechanics, the accuracies and detail levels of pedestrian network data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2021-05, Vol.8 (9), p.7203-7213
Hauptverfasser: Zhou, Baoding, Zheng, Tianjing, Huang, Jincai, Zhang, Yunfei, Tu, Wei, Li, Qingquan, Deng, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7213
container_issue 9
container_start_page 7203
container_title IEEE internet of things journal
container_volume 8
creator Zhou, Baoding
Zheng, Tianjing
Huang, Jincai
Zhang, Yunfei
Tu, Wei
Li, Qingquan
Deng, Min
description With the promotion of low-carbon travel, pedestrian network plays an important role in many location-based applications, such as pedestrian navigation and refined traffic management. Due to the lack of systematic data acquisition mechanics, the accuracies and detail levels of pedestrian network data are hardly capable of satisfying the demands of such transportation applications. Presently, various mobile phone apps recorded and stored users' movement trajectories, which provide a valuable data source for pedestrian network construction. Hence, this article proposes a crowdsourcing-based system for generating pedestrian network that encompasses three key components of crowdsourced walking trajectory data filtering, pedestrian network construction and evaluation of pedestrian network. Self-collected data and open platform data were used to evaluate the proposed system. Experimental results demonstrate that the proposed method can accurately and completely extract pedestrian network. Moreover, the pedestrian network can be updated in a timely manner by the proposed method. The data collection application and the collected data are available to the public.
doi_str_mv 10.1109/JIOT.2020.3038445
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9261575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9261575</ieee_id><sourcerecordid>2517041777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fb29a5be32752e139674ade1a5ac67c46dfa72ee1377e087f4777230d467bb463</originalsourceid><addsrcrecordid>eNpNUMtKAzEUDaJgqf0AcRNwPTXvdJZ18FEpVmjFZchk7sj0ManJlNK_N6VFXN3XOfeeexC6pWRIKckf3iazxZARRoac8JEQ8gL1GGc6E0qxy3_5NRrEuCSEJJqkueqh-Rh_QAWxC41t8Tt0ex9WuPBt6uxc1_gWzw-xgw1-tBEqnOoi-H0V_S64VH_Z9appv_Ei2CW4zocG4g26qu06wuAc--jz-WlRvGbT2cukGE8zx3LeZXXJcitLSOIkA8pzpYWtgFppndJOqKq2mkGaaA1kpGuhtWacVELpshSK99H9ae82-J9d-sEsk6o2nTRMUk0ETYSEoieUCz7GALXZhmZjw8FQYo72maN95mifOduXOHcnTgMAf_icKSq15L_Al2ta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517041777</pqid></control><display><type>article</type><title>A Pedestrian Network Construction System Based on Crowdsourced Walking Trajectories</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Baoding ; Zheng, Tianjing ; Huang, Jincai ; Zhang, Yunfei ; Tu, Wei ; Li, Qingquan ; Deng, Min</creator><creatorcontrib>Zhou, Baoding ; Zheng, Tianjing ; Huang, Jincai ; Zhang, Yunfei ; Tu, Wei ; Li, Qingquan ; Deng, Min</creatorcontrib><description>With the promotion of low-carbon travel, pedestrian network plays an important role in many location-based applications, such as pedestrian navigation and refined traffic management. Due to the lack of systematic data acquisition mechanics, the accuracies and detail levels of pedestrian network data are hardly capable of satisfying the demands of such transportation applications. Presently, various mobile phone apps recorded and stored users' movement trajectories, which provide a valuable data source for pedestrian network construction. Hence, this article proposes a crowdsourcing-based system for generating pedestrian network that encompasses three key components of crowdsourced walking trajectory data filtering, pedestrian network construction and evaluation of pedestrian network. Self-collected data and open platform data were used to evaluate the proposed system. Experimental results demonstrate that the proposed method can accurately and completely extract pedestrian network. Moreover, the pedestrian network can be updated in a timely manner by the proposed method. The data collection application and the collected data are available to the public.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.3038445</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Applications programs ; Crowdsourcing ; Data collection ; Data mining ; Global Positioning System ; Legged locomotion ; Location based services ; Morse theory ; Navigation ; pedestrian network construction ; Roads ; Traffic management ; Trajectories ; Trajectory ; Transportation applications ; Transportation networks ; Walking</subject><ispartof>IEEE internet of things journal, 2021-05, Vol.8 (9), p.7203-7213</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fb29a5be32752e139674ade1a5ac67c46dfa72ee1377e087f4777230d467bb463</citedby><cites>FETCH-LOGICAL-c293t-fb29a5be32752e139674ade1a5ac67c46dfa72ee1377e087f4777230d467bb463</cites><orcidid>0000-0002-2438-6046 ; 0000-0002-7163-6749 ; 0000-0002-0255-4037 ; 0000-0003-1607-2626 ; 0000-0002-8730-5848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9261575$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9261575$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Baoding</creatorcontrib><creatorcontrib>Zheng, Tianjing</creatorcontrib><creatorcontrib>Huang, Jincai</creatorcontrib><creatorcontrib>Zhang, Yunfei</creatorcontrib><creatorcontrib>Tu, Wei</creatorcontrib><creatorcontrib>Li, Qingquan</creatorcontrib><creatorcontrib>Deng, Min</creatorcontrib><title>A Pedestrian Network Construction System Based on Crowdsourced Walking Trajectories</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With the promotion of low-carbon travel, pedestrian network plays an important role in many location-based applications, such as pedestrian navigation and refined traffic management. Due to the lack of systematic data acquisition mechanics, the accuracies and detail levels of pedestrian network data are hardly capable of satisfying the demands of such transportation applications. Presently, various mobile phone apps recorded and stored users' movement trajectories, which provide a valuable data source for pedestrian network construction. Hence, this article proposes a crowdsourcing-based system for generating pedestrian network that encompasses three key components of crowdsourced walking trajectory data filtering, pedestrian network construction and evaluation of pedestrian network. Self-collected data and open platform data were used to evaluate the proposed system. Experimental results demonstrate that the proposed method can accurately and completely extract pedestrian network. Moreover, the pedestrian network can be updated in a timely manner by the proposed method. The data collection application and the collected data are available to the public.</description><subject>Applications programs</subject><subject>Crowdsourcing</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Global Positioning System</subject><subject>Legged locomotion</subject><subject>Location based services</subject><subject>Morse theory</subject><subject>Navigation</subject><subject>pedestrian network construction</subject><subject>Roads</subject><subject>Traffic management</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>Transportation applications</subject><subject>Transportation networks</subject><subject>Walking</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtKAzEUDaJgqf0AcRNwPTXvdJZ18FEpVmjFZchk7sj0ManJlNK_N6VFXN3XOfeeexC6pWRIKckf3iazxZARRoac8JEQ8gL1GGc6E0qxy3_5NRrEuCSEJJqkueqh-Rh_QAWxC41t8Tt0ex9WuPBt6uxc1_gWzw-xgw1-tBEqnOoi-H0V_S64VH_Z9appv_Ei2CW4zocG4g26qu06wuAc--jz-WlRvGbT2cukGE8zx3LeZXXJcitLSOIkA8pzpYWtgFppndJOqKq2mkGaaA1kpGuhtWacVELpshSK99H9ae82-J9d-sEsk6o2nTRMUk0ETYSEoieUCz7GALXZhmZjw8FQYo72maN95mifOduXOHcnTgMAf_icKSq15L_Al2ta</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Zhou, Baoding</creator><creator>Zheng, Tianjing</creator><creator>Huang, Jincai</creator><creator>Zhang, Yunfei</creator><creator>Tu, Wei</creator><creator>Li, Qingquan</creator><creator>Deng, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2438-6046</orcidid><orcidid>https://orcid.org/0000-0002-7163-6749</orcidid><orcidid>https://orcid.org/0000-0002-0255-4037</orcidid><orcidid>https://orcid.org/0000-0003-1607-2626</orcidid><orcidid>https://orcid.org/0000-0002-8730-5848</orcidid></search><sort><creationdate>20210501</creationdate><title>A Pedestrian Network Construction System Based on Crowdsourced Walking Trajectories</title><author>Zhou, Baoding ; Zheng, Tianjing ; Huang, Jincai ; Zhang, Yunfei ; Tu, Wei ; Li, Qingquan ; Deng, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fb29a5be32752e139674ade1a5ac67c46dfa72ee1377e087f4777230d467bb463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications programs</topic><topic>Crowdsourcing</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Global Positioning System</topic><topic>Legged locomotion</topic><topic>Location based services</topic><topic>Morse theory</topic><topic>Navigation</topic><topic>pedestrian network construction</topic><topic>Roads</topic><topic>Traffic management</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>Transportation applications</topic><topic>Transportation networks</topic><topic>Walking</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Baoding</creatorcontrib><creatorcontrib>Zheng, Tianjing</creatorcontrib><creatorcontrib>Huang, Jincai</creatorcontrib><creatorcontrib>Zhang, Yunfei</creatorcontrib><creatorcontrib>Tu, Wei</creatorcontrib><creatorcontrib>Li, Qingquan</creatorcontrib><creatorcontrib>Deng, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Baoding</au><au>Zheng, Tianjing</au><au>Huang, Jincai</au><au>Zhang, Yunfei</au><au>Tu, Wei</au><au>Li, Qingquan</au><au>Deng, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pedestrian Network Construction System Based on Crowdsourced Walking Trajectories</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>8</volume><issue>9</issue><spage>7203</spage><epage>7213</epage><pages>7203-7213</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With the promotion of low-carbon travel, pedestrian network plays an important role in many location-based applications, such as pedestrian navigation and refined traffic management. Due to the lack of systematic data acquisition mechanics, the accuracies and detail levels of pedestrian network data are hardly capable of satisfying the demands of such transportation applications. Presently, various mobile phone apps recorded and stored users' movement trajectories, which provide a valuable data source for pedestrian network construction. Hence, this article proposes a crowdsourcing-based system for generating pedestrian network that encompasses three key components of crowdsourced walking trajectory data filtering, pedestrian network construction and evaluation of pedestrian network. Self-collected data and open platform data were used to evaluate the proposed system. Experimental results demonstrate that the proposed method can accurately and completely extract pedestrian network. Moreover, the pedestrian network can be updated in a timely manner by the proposed method. The data collection application and the collected data are available to the public.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.3038445</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2438-6046</orcidid><orcidid>https://orcid.org/0000-0002-7163-6749</orcidid><orcidid>https://orcid.org/0000-0002-0255-4037</orcidid><orcidid>https://orcid.org/0000-0003-1607-2626</orcidid><orcidid>https://orcid.org/0000-0002-8730-5848</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2021-05, Vol.8 (9), p.7203-7213
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_9261575
source IEEE Electronic Library (IEL)
subjects Applications programs
Crowdsourcing
Data collection
Data mining
Global Positioning System
Legged locomotion
Location based services
Morse theory
Navigation
pedestrian network construction
Roads
Traffic management
Trajectories
Trajectory
Transportation applications
Transportation networks
Walking
title A Pedestrian Network Construction System Based on Crowdsourced Walking Trajectories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pedestrian%20Network%20Construction%20System%20Based%20on%20Crowdsourced%20Walking%20Trajectories&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhou,%20Baoding&rft.date=2021-05-01&rft.volume=8&rft.issue=9&rft.spage=7203&rft.epage=7213&rft.pages=7203-7213&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.3038445&rft_dat=%3Cproquest_RIE%3E2517041777%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517041777&rft_id=info:pmid/&rft_ieee_id=9261575&rfr_iscdi=true