A Pedestrian Network Construction System Based on Crowdsourced Walking Trajectories
With the promotion of low-carbon travel, pedestrian network plays an important role in many location-based applications, such as pedestrian navigation and refined traffic management. Due to the lack of systematic data acquisition mechanics, the accuracies and detail levels of pedestrian network data...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2021-05, Vol.8 (9), p.7203-7213 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7213 |
---|---|
container_issue | 9 |
container_start_page | 7203 |
container_title | IEEE internet of things journal |
container_volume | 8 |
creator | Zhou, Baoding Zheng, Tianjing Huang, Jincai Zhang, Yunfei Tu, Wei Li, Qingquan Deng, Min |
description | With the promotion of low-carbon travel, pedestrian network plays an important role in many location-based applications, such as pedestrian navigation and refined traffic management. Due to the lack of systematic data acquisition mechanics, the accuracies and detail levels of pedestrian network data are hardly capable of satisfying the demands of such transportation applications. Presently, various mobile phone apps recorded and stored users' movement trajectories, which provide a valuable data source for pedestrian network construction. Hence, this article proposes a crowdsourcing-based system for generating pedestrian network that encompasses three key components of crowdsourced walking trajectory data filtering, pedestrian network construction and evaluation of pedestrian network. Self-collected data and open platform data were used to evaluate the proposed system. Experimental results demonstrate that the proposed method can accurately and completely extract pedestrian network. Moreover, the pedestrian network can be updated in a timely manner by the proposed method. The data collection application and the collected data are available to the public. |
doi_str_mv | 10.1109/JIOT.2020.3038445 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9261575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9261575</ieee_id><sourcerecordid>2517041777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fb29a5be32752e139674ade1a5ac67c46dfa72ee1377e087f4777230d467bb463</originalsourceid><addsrcrecordid>eNpNUMtKAzEUDaJgqf0AcRNwPTXvdJZ18FEpVmjFZchk7sj0ManJlNK_N6VFXN3XOfeeexC6pWRIKckf3iazxZARRoac8JEQ8gL1GGc6E0qxy3_5NRrEuCSEJJqkueqh-Rh_QAWxC41t8Tt0ex9WuPBt6uxc1_gWzw-xgw1-tBEqnOoi-H0V_S64VH_Z9appv_Ei2CW4zocG4g26qu06wuAc--jz-WlRvGbT2cukGE8zx3LeZXXJcitLSOIkA8pzpYWtgFppndJOqKq2mkGaaA1kpGuhtWacVELpshSK99H9ae82-J9d-sEsk6o2nTRMUk0ETYSEoieUCz7GALXZhmZjw8FQYo72maN95mifOduXOHcnTgMAf_icKSq15L_Al2ta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517041777</pqid></control><display><type>article</type><title>A Pedestrian Network Construction System Based on Crowdsourced Walking Trajectories</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Baoding ; Zheng, Tianjing ; Huang, Jincai ; Zhang, Yunfei ; Tu, Wei ; Li, Qingquan ; Deng, Min</creator><creatorcontrib>Zhou, Baoding ; Zheng, Tianjing ; Huang, Jincai ; Zhang, Yunfei ; Tu, Wei ; Li, Qingquan ; Deng, Min</creatorcontrib><description>With the promotion of low-carbon travel, pedestrian network plays an important role in many location-based applications, such as pedestrian navigation and refined traffic management. Due to the lack of systematic data acquisition mechanics, the accuracies and detail levels of pedestrian network data are hardly capable of satisfying the demands of such transportation applications. Presently, various mobile phone apps recorded and stored users' movement trajectories, which provide a valuable data source for pedestrian network construction. Hence, this article proposes a crowdsourcing-based system for generating pedestrian network that encompasses three key components of crowdsourced walking trajectory data filtering, pedestrian network construction and evaluation of pedestrian network. Self-collected data and open platform data were used to evaluate the proposed system. Experimental results demonstrate that the proposed method can accurately and completely extract pedestrian network. Moreover, the pedestrian network can be updated in a timely manner by the proposed method. The data collection application and the collected data are available to the public.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.3038445</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Applications programs ; Crowdsourcing ; Data collection ; Data mining ; Global Positioning System ; Legged locomotion ; Location based services ; Morse theory ; Navigation ; pedestrian network construction ; Roads ; Traffic management ; Trajectories ; Trajectory ; Transportation applications ; Transportation networks ; Walking</subject><ispartof>IEEE internet of things journal, 2021-05, Vol.8 (9), p.7203-7213</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fb29a5be32752e139674ade1a5ac67c46dfa72ee1377e087f4777230d467bb463</citedby><cites>FETCH-LOGICAL-c293t-fb29a5be32752e139674ade1a5ac67c46dfa72ee1377e087f4777230d467bb463</cites><orcidid>0000-0002-2438-6046 ; 0000-0002-7163-6749 ; 0000-0002-0255-4037 ; 0000-0003-1607-2626 ; 0000-0002-8730-5848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9261575$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9261575$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Baoding</creatorcontrib><creatorcontrib>Zheng, Tianjing</creatorcontrib><creatorcontrib>Huang, Jincai</creatorcontrib><creatorcontrib>Zhang, Yunfei</creatorcontrib><creatorcontrib>Tu, Wei</creatorcontrib><creatorcontrib>Li, Qingquan</creatorcontrib><creatorcontrib>Deng, Min</creatorcontrib><title>A Pedestrian Network Construction System Based on Crowdsourced Walking Trajectories</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With the promotion of low-carbon travel, pedestrian network plays an important role in many location-based applications, such as pedestrian navigation and refined traffic management. Due to the lack of systematic data acquisition mechanics, the accuracies and detail levels of pedestrian network data are hardly capable of satisfying the demands of such transportation applications. Presently, various mobile phone apps recorded and stored users' movement trajectories, which provide a valuable data source for pedestrian network construction. Hence, this article proposes a crowdsourcing-based system for generating pedestrian network that encompasses three key components of crowdsourced walking trajectory data filtering, pedestrian network construction and evaluation of pedestrian network. Self-collected data and open platform data were used to evaluate the proposed system. Experimental results demonstrate that the proposed method can accurately and completely extract pedestrian network. Moreover, the pedestrian network can be updated in a timely manner by the proposed method. The data collection application and the collected data are available to the public.</description><subject>Applications programs</subject><subject>Crowdsourcing</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Global Positioning System</subject><subject>Legged locomotion</subject><subject>Location based services</subject><subject>Morse theory</subject><subject>Navigation</subject><subject>pedestrian network construction</subject><subject>Roads</subject><subject>Traffic management</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>Transportation applications</subject><subject>Transportation networks</subject><subject>Walking</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtKAzEUDaJgqf0AcRNwPTXvdJZ18FEpVmjFZchk7sj0ManJlNK_N6VFXN3XOfeeexC6pWRIKckf3iazxZARRoac8JEQ8gL1GGc6E0qxy3_5NRrEuCSEJJqkueqh-Rh_QAWxC41t8Tt0ex9WuPBt6uxc1_gWzw-xgw1-tBEqnOoi-H0V_S64VH_Z9appv_Ei2CW4zocG4g26qu06wuAc--jz-WlRvGbT2cukGE8zx3LeZXXJcitLSOIkA8pzpYWtgFppndJOqKq2mkGaaA1kpGuhtWacVELpshSK99H9ae82-J9d-sEsk6o2nTRMUk0ETYSEoieUCz7GALXZhmZjw8FQYo72maN95mifOduXOHcnTgMAf_icKSq15L_Al2ta</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Zhou, Baoding</creator><creator>Zheng, Tianjing</creator><creator>Huang, Jincai</creator><creator>Zhang, Yunfei</creator><creator>Tu, Wei</creator><creator>Li, Qingquan</creator><creator>Deng, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2438-6046</orcidid><orcidid>https://orcid.org/0000-0002-7163-6749</orcidid><orcidid>https://orcid.org/0000-0002-0255-4037</orcidid><orcidid>https://orcid.org/0000-0003-1607-2626</orcidid><orcidid>https://orcid.org/0000-0002-8730-5848</orcidid></search><sort><creationdate>20210501</creationdate><title>A Pedestrian Network Construction System Based on Crowdsourced Walking Trajectories</title><author>Zhou, Baoding ; Zheng, Tianjing ; Huang, Jincai ; Zhang, Yunfei ; Tu, Wei ; Li, Qingquan ; Deng, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fb29a5be32752e139674ade1a5ac67c46dfa72ee1377e087f4777230d467bb463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications programs</topic><topic>Crowdsourcing</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Global Positioning System</topic><topic>Legged locomotion</topic><topic>Location based services</topic><topic>Morse theory</topic><topic>Navigation</topic><topic>pedestrian network construction</topic><topic>Roads</topic><topic>Traffic management</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>Transportation applications</topic><topic>Transportation networks</topic><topic>Walking</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Baoding</creatorcontrib><creatorcontrib>Zheng, Tianjing</creatorcontrib><creatorcontrib>Huang, Jincai</creatorcontrib><creatorcontrib>Zhang, Yunfei</creatorcontrib><creatorcontrib>Tu, Wei</creatorcontrib><creatorcontrib>Li, Qingquan</creatorcontrib><creatorcontrib>Deng, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Baoding</au><au>Zheng, Tianjing</au><au>Huang, Jincai</au><au>Zhang, Yunfei</au><au>Tu, Wei</au><au>Li, Qingquan</au><au>Deng, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pedestrian Network Construction System Based on Crowdsourced Walking Trajectories</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>8</volume><issue>9</issue><spage>7203</spage><epage>7213</epage><pages>7203-7213</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With the promotion of low-carbon travel, pedestrian network plays an important role in many location-based applications, such as pedestrian navigation and refined traffic management. Due to the lack of systematic data acquisition mechanics, the accuracies and detail levels of pedestrian network data are hardly capable of satisfying the demands of such transportation applications. Presently, various mobile phone apps recorded and stored users' movement trajectories, which provide a valuable data source for pedestrian network construction. Hence, this article proposes a crowdsourcing-based system for generating pedestrian network that encompasses three key components of crowdsourced walking trajectory data filtering, pedestrian network construction and evaluation of pedestrian network. Self-collected data and open platform data were used to evaluate the proposed system. Experimental results demonstrate that the proposed method can accurately and completely extract pedestrian network. Moreover, the pedestrian network can be updated in a timely manner by the proposed method. The data collection application and the collected data are available to the public.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.3038445</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2438-6046</orcidid><orcidid>https://orcid.org/0000-0002-7163-6749</orcidid><orcidid>https://orcid.org/0000-0002-0255-4037</orcidid><orcidid>https://orcid.org/0000-0003-1607-2626</orcidid><orcidid>https://orcid.org/0000-0002-8730-5848</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2021-05, Vol.8 (9), p.7203-7213 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_9261575 |
source | IEEE Electronic Library (IEL) |
subjects | Applications programs Crowdsourcing Data collection Data mining Global Positioning System Legged locomotion Location based services Morse theory Navigation pedestrian network construction Roads Traffic management Trajectories Trajectory Transportation applications Transportation networks Walking |
title | A Pedestrian Network Construction System Based on Crowdsourced Walking Trajectories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pedestrian%20Network%20Construction%20System%20Based%20on%20Crowdsourced%20Walking%20Trajectories&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhou,%20Baoding&rft.date=2021-05-01&rft.volume=8&rft.issue=9&rft.spage=7203&rft.epage=7213&rft.pages=7203-7213&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.3038445&rft_dat=%3Cproquest_RIE%3E2517041777%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517041777&rft_id=info:pmid/&rft_ieee_id=9261575&rfr_iscdi=true |