Performance and Analysis of Recursive Constrained Least Lncosh Algorithm Under Impulsive Noises

We propose a recursive constrained least lncosh (RCLL) adaptive algorithm to combat the impulsive noises. In general, the lncosh function is used to develop a new algorithm within the context of constrained adaptive filtering via solving a linear constrained optimization problem, where the lncosh fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2021-06, Vol.68 (6), p.2217-2221
Hauptverfasser: Liang, Tao, Li, Yingsong, Xue, Wei, Li, Yibing, Jiang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2221
container_issue 6
container_start_page 2217
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 68
creator Liang, Tao
Li, Yingsong
Xue, Wei
Li, Yibing
Jiang, Tao
description We propose a recursive constrained least lncosh (RCLL) adaptive algorithm to combat the impulsive noises. In general, the lncosh function is used to develop a new algorithm within the context of constrained adaptive filtering via solving a linear constrained optimization problem, where the lncosh function is a natural logarithm of hyperbolic cosine function, which can be regarded as a combination of mean-square-error (MSE) and mean-absolute-error (MAE) criteria. Compared with other typical recursive methods, the proposed RCLL algorithm can obtain superior steady state behavior and better robustness for combating impulsive noises. Besides, the mean-square convergence condition and theoretical transient mean-square-deviation of the RCLL algorithm is presented. Simulation results verified the theoretical analysis in non-Gaussian noises and shown the superior performance of the proposed RCLL algorithm.
doi_str_mv 10.1109/TCSII.2020.3037877
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9259085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9259085</ieee_id><sourcerecordid>2533490298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-8e582ff88e49d52e805fdd814dd3b2773e74f77d1c6841458c5448c96180f7293</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhYMoWKt_QDcDrlPn2ZlZluAjEFS0XQ8xc8emJJk6kwj996YPXN27ON-B8yXJLcEzQrB-WGafeT6jmOIZw0wqKc-SCRFCpUxqcr7_uU6l5PIyuYpxgzHVmNFJYt4hOB_asqsAlZ1Fi65sdrGOyDv0AdUQYv0LKPNd7ENZd2BRAWXsUdFVPq7Rovn2oe7XLVp1FgLK2-3QHJBXX0eI18mFK5sIN6c7TVZPj8vsJS3envNsUaQV1aJPFQhFnVMKuLaCgsLCWasIt5Z9USkZSO6ktKSaK064UJXgXFV6ThR2kmo2Te6PvdvgfwaIvdn4IYxboqGCMa7HwWpM0WOqCj7GAM5sQ92WYWcINnuR5iDS7EWak8gRujtCNQD8A5oKjZVgf21ebyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533490298</pqid></control><display><type>article</type><title>Performance and Analysis of Recursive Constrained Least Lncosh Algorithm Under Impulsive Noises</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Tao ; Li, Yingsong ; Xue, Wei ; Li, Yibing ; Jiang, Tao</creator><creatorcontrib>Liang, Tao ; Li, Yingsong ; Xue, Wei ; Li, Yibing ; Jiang, Tao</creatorcontrib><description>We propose a recursive constrained least lncosh (RCLL) adaptive algorithm to combat the impulsive noises. In general, the lncosh function is used to develop a new algorithm within the context of constrained adaptive filtering via solving a linear constrained optimization problem, where the lncosh function is a natural logarithm of hyperbolic cosine function, which can be regarded as a combination of mean-square-error (MSE) and mean-absolute-error (MAE) criteria. Compared with other typical recursive methods, the proposed RCLL algorithm can obtain superior steady state behavior and better robustness for combating impulsive noises. Besides, the mean-square convergence condition and theoretical transient mean-square-deviation of the RCLL algorithm is presented. Simulation results verified the theoretical analysis in non-Gaussian noises and shown the superior performance of the proposed RCLL algorithm.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2020.3037877</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Adaptive filters ; Algorithms ; Circuits and systems ; Convergence ; Gaussian noise ; Hyperbolic functions ; linear system identification ; Lncosh cost function ; Optimization ; Optimized production technology ; recursive constrained adaptive filtering ; Recursive methods ; Robustness ; Signal processing algorithms ; Steady-state ; Trigonometric functions</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2021-06, Vol.68 (6), p.2217-2221</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-8e582ff88e49d52e805fdd814dd3b2773e74f77d1c6841458c5448c96180f7293</citedby><cites>FETCH-LOGICAL-c295t-8e582ff88e49d52e805fdd814dd3b2773e74f77d1c6841458c5448c96180f7293</cites><orcidid>0000-0002-2450-6028 ; 0000-0003-1104-0959 ; 0000-0001-6262-3391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9259085$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9259085$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Tao</creatorcontrib><creatorcontrib>Li, Yingsong</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Li, Yibing</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><title>Performance and Analysis of Recursive Constrained Least Lncosh Algorithm Under Impulsive Noises</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>We propose a recursive constrained least lncosh (RCLL) adaptive algorithm to combat the impulsive noises. In general, the lncosh function is used to develop a new algorithm within the context of constrained adaptive filtering via solving a linear constrained optimization problem, where the lncosh function is a natural logarithm of hyperbolic cosine function, which can be regarded as a combination of mean-square-error (MSE) and mean-absolute-error (MAE) criteria. Compared with other typical recursive methods, the proposed RCLL algorithm can obtain superior steady state behavior and better robustness for combating impulsive noises. Besides, the mean-square convergence condition and theoretical transient mean-square-deviation of the RCLL algorithm is presented. Simulation results verified the theoretical analysis in non-Gaussian noises and shown the superior performance of the proposed RCLL algorithm.</description><subject>Adaptive algorithms</subject><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Circuits and systems</subject><subject>Convergence</subject><subject>Gaussian noise</subject><subject>Hyperbolic functions</subject><subject>linear system identification</subject><subject>Lncosh cost function</subject><subject>Optimization</subject><subject>Optimized production technology</subject><subject>recursive constrained adaptive filtering</subject><subject>Recursive methods</subject><subject>Robustness</subject><subject>Signal processing algorithms</subject><subject>Steady-state</subject><subject>Trigonometric functions</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhYMoWKt_QDcDrlPn2ZlZluAjEFS0XQ8xc8emJJk6kwj996YPXN27ON-B8yXJLcEzQrB-WGafeT6jmOIZw0wqKc-SCRFCpUxqcr7_uU6l5PIyuYpxgzHVmNFJYt4hOB_asqsAlZ1Fi65sdrGOyDv0AdUQYv0LKPNd7ENZd2BRAWXsUdFVPq7Rovn2oe7XLVp1FgLK2-3QHJBXX0eI18mFK5sIN6c7TVZPj8vsJS3envNsUaQV1aJPFQhFnVMKuLaCgsLCWasIt5Z9USkZSO6ktKSaK064UJXgXFV6ThR2kmo2Te6PvdvgfwaIvdn4IYxboqGCMa7HwWpM0WOqCj7GAM5sQ92WYWcINnuR5iDS7EWak8gRujtCNQD8A5oKjZVgf21ebyE</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Liang, Tao</creator><creator>Li, Yingsong</creator><creator>Xue, Wei</creator><creator>Li, Yibing</creator><creator>Jiang, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2450-6028</orcidid><orcidid>https://orcid.org/0000-0003-1104-0959</orcidid><orcidid>https://orcid.org/0000-0001-6262-3391</orcidid></search><sort><creationdate>20210601</creationdate><title>Performance and Analysis of Recursive Constrained Least Lncosh Algorithm Under Impulsive Noises</title><author>Liang, Tao ; Li, Yingsong ; Xue, Wei ; Li, Yibing ; Jiang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-8e582ff88e49d52e805fdd814dd3b2773e74f77d1c6841458c5448c96180f7293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Circuits and systems</topic><topic>Convergence</topic><topic>Gaussian noise</topic><topic>Hyperbolic functions</topic><topic>linear system identification</topic><topic>Lncosh cost function</topic><topic>Optimization</topic><topic>Optimized production technology</topic><topic>recursive constrained adaptive filtering</topic><topic>Recursive methods</topic><topic>Robustness</topic><topic>Signal processing algorithms</topic><topic>Steady-state</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Tao</creatorcontrib><creatorcontrib>Li, Yingsong</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Li, Yibing</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Tao</au><au>Li, Yingsong</au><au>Xue, Wei</au><au>Li, Yibing</au><au>Jiang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance and Analysis of Recursive Constrained Least Lncosh Algorithm Under Impulsive Noises</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>68</volume><issue>6</issue><spage>2217</spage><epage>2221</epage><pages>2217-2221</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>We propose a recursive constrained least lncosh (RCLL) adaptive algorithm to combat the impulsive noises. In general, the lncosh function is used to develop a new algorithm within the context of constrained adaptive filtering via solving a linear constrained optimization problem, where the lncosh function is a natural logarithm of hyperbolic cosine function, which can be regarded as a combination of mean-square-error (MSE) and mean-absolute-error (MAE) criteria. Compared with other typical recursive methods, the proposed RCLL algorithm can obtain superior steady state behavior and better robustness for combating impulsive noises. Besides, the mean-square convergence condition and theoretical transient mean-square-deviation of the RCLL algorithm is presented. Simulation results verified the theoretical analysis in non-Gaussian noises and shown the superior performance of the proposed RCLL algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2020.3037877</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2450-6028</orcidid><orcidid>https://orcid.org/0000-0003-1104-0959</orcidid><orcidid>https://orcid.org/0000-0001-6262-3391</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2021-06, Vol.68 (6), p.2217-2221
issn 1549-7747
1558-3791
language eng
recordid cdi_ieee_primary_9259085
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Adaptive filters
Algorithms
Circuits and systems
Convergence
Gaussian noise
Hyperbolic functions
linear system identification
Lncosh cost function
Optimization
Optimized production technology
recursive constrained adaptive filtering
Recursive methods
Robustness
Signal processing algorithms
Steady-state
Trigonometric functions
title Performance and Analysis of Recursive Constrained Least Lncosh Algorithm Under Impulsive Noises
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20and%20Analysis%20of%20Recursive%20Constrained%20Least%20Lncosh%20Algorithm%20Under%20Impulsive%20Noises&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Liang,%20Tao&rft.date=2021-06-01&rft.volume=68&rft.issue=6&rft.spage=2217&rft.epage=2221&rft.pages=2217-2221&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2020.3037877&rft_dat=%3Cproquest_RIE%3E2533490298%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533490298&rft_id=info:pmid/&rft_ieee_id=9259085&rfr_iscdi=true