On Computing the Discrete Hirschman Transform

The Discrete Hirschman Transform (DHT) is a generalization of the entropy-based Hirschman Transform that canonically represents digital signals with sparse basis functions. The DHT is computationally attractive in providing the flexibility in hardware implementations since it has a sparse structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2020, Vol.68, p.6444-6452
Hauptverfasser: Xue, Dingli, DeBrunner, Linda S., DeBrunner, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6452
container_issue
container_start_page 6444
container_title IEEE transactions on signal processing
container_volume 68
creator Xue, Dingli
DeBrunner, Linda S.
DeBrunner, Victor
description The Discrete Hirschman Transform (DHT) is a generalization of the entropy-based Hirschman Transform that canonically represents digital signals with sparse basis functions. The DHT is computationally attractive in providing the flexibility in hardware implementations since it has a sparse structure that is similar to that of the Discrete Fourier Transform (DFT) basis. This Hirschman-based algorithm has been widely applied in many digital signal processing algorithms such as denoising, filtering, and linear convolution. In this paper, we have developed two fast algorithms: the radix-2 and radix-4 DHT algorithms. These efficient algorithms significantly reduce the number of nontrivial real computations when compared to the original DHT algorithm and other popular Fast Fourier Transforms (FFTs). We show that it is feasible to realize our new algorithms in hardware through the use of a repetitive application of butterfly computations in a structure that will be familiar to those already working with the similar FFT algorithms. Our proposed algorithms reduce the number of nontrivial real computations while efficiently using available hardware resources.
doi_str_mv 10.1109/TSP.2020.3037402
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9257109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9257109</ieee_id><sourcerecordid>2467293670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-843072e0be731a9c51bfd361d023046d50c05e20578f9a1ef8efc8d997c341833</originalsourceid><addsrcrecordid>eNo9kM9Lw0AQhRdRsFbvgpeA58SZ_ZHNHiVaKxQqWMHbkm5mbYpJ6m568L83pcXTvMP33sDH2C1ChgjmYfX-lnHgkAkQWgI_YxM0ElOQOj8fMyiRqkJ_XrKrGLcAKKXJJyxddknZt7v90HRfybCh5KmJLtBAybwJ0W3aqktWoeqi70N7zS589R3p5nSn7GP2vCrn6WL58lo-LlLHDQ5pIQVoTrAmLbAyTuHa1yLHGrgAmdcKHCjioHThTYXkC_KuqI3RTkgshJiy--PuLvQ_e4qD3fb70I0vLZe55kbkGkYKjpQLfYyBvN2Fpq3Cr0WwByl2lGIPUuxJyli5O1YaIvrHDVd6xMUfzplbVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467293670</pqid></control><display><type>article</type><title>On Computing the Discrete Hirschman Transform</title><source>IEEE Electronic Library (IEL)</source><creator>Xue, Dingli ; DeBrunner, Linda S. ; DeBrunner, Victor</creator><creatorcontrib>Xue, Dingli ; DeBrunner, Linda S. ; DeBrunner, Victor</creatorcontrib><description>The Discrete Hirschman Transform (DHT) is a generalization of the entropy-based Hirschman Transform that canonically represents digital signals with sparse basis functions. The DHT is computationally attractive in providing the flexibility in hardware implementations since it has a sparse structure that is similar to that of the Discrete Fourier Transform (DFT) basis. This Hirschman-based algorithm has been widely applied in many digital signal processing algorithms such as denoising, filtering, and linear convolution. In this paper, we have developed two fast algorithms: the radix-2 and radix-4 DHT algorithms. These efficient algorithms significantly reduce the number of nontrivial real computations when compared to the original DHT algorithm and other popular Fast Fourier Transforms (FFTs). We show that it is feasible to realize our new algorithms in hardware through the use of a repetitive application of butterfly computations in a structure that will be familiar to those already working with the similar FFT algorithms. Our proposed algorithms reduce the number of nontrivial real computations while efficiently using available hardware resources.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2020.3037402</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm ; Algorithms ; Basis functions ; computational complexity ; Computational efficiency ; Convolution ; DHT ; Digital signal processing ; Discrete Fourier transforms ; Fast Fourier transformations ; FFT ; Fourier transforms ; Hardware ; hirschman transform ; HOT ; Noise reduction ; signal processing ; Signal processing algorithms ; Transforms</subject><ispartof>IEEE transactions on signal processing, 2020, Vol.68, p.6444-6452</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-843072e0be731a9c51bfd361d023046d50c05e20578f9a1ef8efc8d997c341833</citedby><orcidid>0000-0003-2198-2552 ; 0000-0001-9926-8602 ; 0000-0003-1633-7233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9257109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9257109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue, Dingli</creatorcontrib><creatorcontrib>DeBrunner, Linda S.</creatorcontrib><creatorcontrib>DeBrunner, Victor</creatorcontrib><title>On Computing the Discrete Hirschman Transform</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The Discrete Hirschman Transform (DHT) is a generalization of the entropy-based Hirschman Transform that canonically represents digital signals with sparse basis functions. The DHT is computationally attractive in providing the flexibility in hardware implementations since it has a sparse structure that is similar to that of the Discrete Fourier Transform (DFT) basis. This Hirschman-based algorithm has been widely applied in many digital signal processing algorithms such as denoising, filtering, and linear convolution. In this paper, we have developed two fast algorithms: the radix-2 and radix-4 DHT algorithms. These efficient algorithms significantly reduce the number of nontrivial real computations when compared to the original DHT algorithm and other popular Fast Fourier Transforms (FFTs). We show that it is feasible to realize our new algorithms in hardware through the use of a repetitive application of butterfly computations in a structure that will be familiar to those already working with the similar FFT algorithms. Our proposed algorithms reduce the number of nontrivial real computations while efficiently using available hardware resources.</description><subject>Algorithm</subject><subject>Algorithms</subject><subject>Basis functions</subject><subject>computational complexity</subject><subject>Computational efficiency</subject><subject>Convolution</subject><subject>DHT</subject><subject>Digital signal processing</subject><subject>Discrete Fourier transforms</subject><subject>Fast Fourier transformations</subject><subject>FFT</subject><subject>Fourier transforms</subject><subject>Hardware</subject><subject>hirschman transform</subject><subject>HOT</subject><subject>Noise reduction</subject><subject>signal processing</subject><subject>Signal processing algorithms</subject><subject>Transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9Lw0AQhRdRsFbvgpeA58SZ_ZHNHiVaKxQqWMHbkm5mbYpJ6m568L83pcXTvMP33sDH2C1ChgjmYfX-lnHgkAkQWgI_YxM0ElOQOj8fMyiRqkJ_XrKrGLcAKKXJJyxddknZt7v90HRfybCh5KmJLtBAybwJ0W3aqktWoeqi70N7zS589R3p5nSn7GP2vCrn6WL58lo-LlLHDQ5pIQVoTrAmLbAyTuHa1yLHGrgAmdcKHCjioHThTYXkC_KuqI3RTkgshJiy--PuLvQ_e4qD3fb70I0vLZe55kbkGkYKjpQLfYyBvN2Fpq3Cr0WwByl2lGIPUuxJyli5O1YaIvrHDVd6xMUfzplbVg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xue, Dingli</creator><creator>DeBrunner, Linda S.</creator><creator>DeBrunner, Victor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2198-2552</orcidid><orcidid>https://orcid.org/0000-0001-9926-8602</orcidid><orcidid>https://orcid.org/0000-0003-1633-7233</orcidid></search><sort><creationdate>2020</creationdate><title>On Computing the Discrete Hirschman Transform</title><author>Xue, Dingli ; DeBrunner, Linda S. ; DeBrunner, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-843072e0be731a9c51bfd361d023046d50c05e20578f9a1ef8efc8d997c341833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithm</topic><topic>Algorithms</topic><topic>Basis functions</topic><topic>computational complexity</topic><topic>Computational efficiency</topic><topic>Convolution</topic><topic>DHT</topic><topic>Digital signal processing</topic><topic>Discrete Fourier transforms</topic><topic>Fast Fourier transformations</topic><topic>FFT</topic><topic>Fourier transforms</topic><topic>Hardware</topic><topic>hirschman transform</topic><topic>HOT</topic><topic>Noise reduction</topic><topic>signal processing</topic><topic>Signal processing algorithms</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Dingli</creatorcontrib><creatorcontrib>DeBrunner, Linda S.</creatorcontrib><creatorcontrib>DeBrunner, Victor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Dingli</au><au>DeBrunner, Linda S.</au><au>DeBrunner, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Computing the Discrete Hirschman Transform</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2020</date><risdate>2020</risdate><volume>68</volume><spage>6444</spage><epage>6452</epage><pages>6444-6452</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The Discrete Hirschman Transform (DHT) is a generalization of the entropy-based Hirschman Transform that canonically represents digital signals with sparse basis functions. The DHT is computationally attractive in providing the flexibility in hardware implementations since it has a sparse structure that is similar to that of the Discrete Fourier Transform (DFT) basis. This Hirschman-based algorithm has been widely applied in many digital signal processing algorithms such as denoising, filtering, and linear convolution. In this paper, we have developed two fast algorithms: the radix-2 and radix-4 DHT algorithms. These efficient algorithms significantly reduce the number of nontrivial real computations when compared to the original DHT algorithm and other popular Fast Fourier Transforms (FFTs). We show that it is feasible to realize our new algorithms in hardware through the use of a repetitive application of butterfly computations in a structure that will be familiar to those already working with the similar FFT algorithms. Our proposed algorithms reduce the number of nontrivial real computations while efficiently using available hardware resources.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2020.3037402</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2198-2552</orcidid><orcidid>https://orcid.org/0000-0001-9926-8602</orcidid><orcidid>https://orcid.org/0000-0003-1633-7233</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2020, Vol.68, p.6444-6452
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_9257109
source IEEE Electronic Library (IEL)
subjects Algorithm
Algorithms
Basis functions
computational complexity
Computational efficiency
Convolution
DHT
Digital signal processing
Discrete Fourier transforms
Fast Fourier transformations
FFT
Fourier transforms
Hardware
hirschman transform
HOT
Noise reduction
signal processing
Signal processing algorithms
Transforms
title On Computing the Discrete Hirschman Transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Computing%20the%20Discrete%20Hirschman%20Transform&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Xue,%20Dingli&rft.date=2020&rft.volume=68&rft.spage=6444&rft.epage=6452&rft.pages=6444-6452&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2020.3037402&rft_dat=%3Cproquest_RIE%3E2467293670%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467293670&rft_id=info:pmid/&rft_ieee_id=9257109&rfr_iscdi=true