On Computing the Discrete Hirschman Transform
The Discrete Hirschman Transform (DHT) is a generalization of the entropy-based Hirschman Transform that canonically represents digital signals with sparse basis functions. The DHT is computationally attractive in providing the flexibility in hardware implementations since it has a sparse structure...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2020, Vol.68, p.6444-6452 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6452 |
---|---|
container_issue | |
container_start_page | 6444 |
container_title | IEEE transactions on signal processing |
container_volume | 68 |
creator | Xue, Dingli DeBrunner, Linda S. DeBrunner, Victor |
description | The Discrete Hirschman Transform (DHT) is a generalization of the entropy-based Hirschman Transform that canonically represents digital signals with sparse basis functions. The DHT is computationally attractive in providing the flexibility in hardware implementations since it has a sparse structure that is similar to that of the Discrete Fourier Transform (DFT) basis. This Hirschman-based algorithm has been widely applied in many digital signal processing algorithms such as denoising, filtering, and linear convolution. In this paper, we have developed two fast algorithms: the radix-2 and radix-4 DHT algorithms. These efficient algorithms significantly reduce the number of nontrivial real computations when compared to the original DHT algorithm and other popular Fast Fourier Transforms (FFTs). We show that it is feasible to realize our new algorithms in hardware through the use of a repetitive application of butterfly computations in a structure that will be familiar to those already working with the similar FFT algorithms. Our proposed algorithms reduce the number of nontrivial real computations while efficiently using available hardware resources. |
doi_str_mv | 10.1109/TSP.2020.3037402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9257109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9257109</ieee_id><sourcerecordid>2467293670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-843072e0be731a9c51bfd361d023046d50c05e20578f9a1ef8efc8d997c341833</originalsourceid><addsrcrecordid>eNo9kM9Lw0AQhRdRsFbvgpeA58SZ_ZHNHiVaKxQqWMHbkm5mbYpJ6m568L83pcXTvMP33sDH2C1ChgjmYfX-lnHgkAkQWgI_YxM0ElOQOj8fMyiRqkJ_XrKrGLcAKKXJJyxddknZt7v90HRfybCh5KmJLtBAybwJ0W3aqktWoeqi70N7zS589R3p5nSn7GP2vCrn6WL58lo-LlLHDQ5pIQVoTrAmLbAyTuHa1yLHGrgAmdcKHCjioHThTYXkC_KuqI3RTkgshJiy--PuLvQ_e4qD3fb70I0vLZe55kbkGkYKjpQLfYyBvN2Fpq3Cr0WwByl2lGIPUuxJyli5O1YaIvrHDVd6xMUfzplbVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467293670</pqid></control><display><type>article</type><title>On Computing the Discrete Hirschman Transform</title><source>IEEE Electronic Library (IEL)</source><creator>Xue, Dingli ; DeBrunner, Linda S. ; DeBrunner, Victor</creator><creatorcontrib>Xue, Dingli ; DeBrunner, Linda S. ; DeBrunner, Victor</creatorcontrib><description>The Discrete Hirschman Transform (DHT) is a generalization of the entropy-based Hirschman Transform that canonically represents digital signals with sparse basis functions. The DHT is computationally attractive in providing the flexibility in hardware implementations since it has a sparse structure that is similar to that of the Discrete Fourier Transform (DFT) basis. This Hirschman-based algorithm has been widely applied in many digital signal processing algorithms such as denoising, filtering, and linear convolution. In this paper, we have developed two fast algorithms: the radix-2 and radix-4 DHT algorithms. These efficient algorithms significantly reduce the number of nontrivial real computations when compared to the original DHT algorithm and other popular Fast Fourier Transforms (FFTs). We show that it is feasible to realize our new algorithms in hardware through the use of a repetitive application of butterfly computations in a structure that will be familiar to those already working with the similar FFT algorithms. Our proposed algorithms reduce the number of nontrivial real computations while efficiently using available hardware resources.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2020.3037402</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm ; Algorithms ; Basis functions ; computational complexity ; Computational efficiency ; Convolution ; DHT ; Digital signal processing ; Discrete Fourier transforms ; Fast Fourier transformations ; FFT ; Fourier transforms ; Hardware ; hirschman transform ; HOT ; Noise reduction ; signal processing ; Signal processing algorithms ; Transforms</subject><ispartof>IEEE transactions on signal processing, 2020, Vol.68, p.6444-6452</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-843072e0be731a9c51bfd361d023046d50c05e20578f9a1ef8efc8d997c341833</citedby><orcidid>0000-0003-2198-2552 ; 0000-0001-9926-8602 ; 0000-0003-1633-7233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9257109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9257109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue, Dingli</creatorcontrib><creatorcontrib>DeBrunner, Linda S.</creatorcontrib><creatorcontrib>DeBrunner, Victor</creatorcontrib><title>On Computing the Discrete Hirschman Transform</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The Discrete Hirschman Transform (DHT) is a generalization of the entropy-based Hirschman Transform that canonically represents digital signals with sparse basis functions. The DHT is computationally attractive in providing the flexibility in hardware implementations since it has a sparse structure that is similar to that of the Discrete Fourier Transform (DFT) basis. This Hirschman-based algorithm has been widely applied in many digital signal processing algorithms such as denoising, filtering, and linear convolution. In this paper, we have developed two fast algorithms: the radix-2 and radix-4 DHT algorithms. These efficient algorithms significantly reduce the number of nontrivial real computations when compared to the original DHT algorithm and other popular Fast Fourier Transforms (FFTs). We show that it is feasible to realize our new algorithms in hardware through the use of a repetitive application of butterfly computations in a structure that will be familiar to those already working with the similar FFT algorithms. Our proposed algorithms reduce the number of nontrivial real computations while efficiently using available hardware resources.</description><subject>Algorithm</subject><subject>Algorithms</subject><subject>Basis functions</subject><subject>computational complexity</subject><subject>Computational efficiency</subject><subject>Convolution</subject><subject>DHT</subject><subject>Digital signal processing</subject><subject>Discrete Fourier transforms</subject><subject>Fast Fourier transformations</subject><subject>FFT</subject><subject>Fourier transforms</subject><subject>Hardware</subject><subject>hirschman transform</subject><subject>HOT</subject><subject>Noise reduction</subject><subject>signal processing</subject><subject>Signal processing algorithms</subject><subject>Transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9Lw0AQhRdRsFbvgpeA58SZ_ZHNHiVaKxQqWMHbkm5mbYpJ6m568L83pcXTvMP33sDH2C1ChgjmYfX-lnHgkAkQWgI_YxM0ElOQOj8fMyiRqkJ_XrKrGLcAKKXJJyxddknZt7v90HRfybCh5KmJLtBAybwJ0W3aqktWoeqi70N7zS589R3p5nSn7GP2vCrn6WL58lo-LlLHDQ5pIQVoTrAmLbAyTuHa1yLHGrgAmdcKHCjioHThTYXkC_KuqI3RTkgshJiy--PuLvQ_e4qD3fb70I0vLZe55kbkGkYKjpQLfYyBvN2Fpq3Cr0WwByl2lGIPUuxJyli5O1YaIvrHDVd6xMUfzplbVg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xue, Dingli</creator><creator>DeBrunner, Linda S.</creator><creator>DeBrunner, Victor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2198-2552</orcidid><orcidid>https://orcid.org/0000-0001-9926-8602</orcidid><orcidid>https://orcid.org/0000-0003-1633-7233</orcidid></search><sort><creationdate>2020</creationdate><title>On Computing the Discrete Hirschman Transform</title><author>Xue, Dingli ; DeBrunner, Linda S. ; DeBrunner, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-843072e0be731a9c51bfd361d023046d50c05e20578f9a1ef8efc8d997c341833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithm</topic><topic>Algorithms</topic><topic>Basis functions</topic><topic>computational complexity</topic><topic>Computational efficiency</topic><topic>Convolution</topic><topic>DHT</topic><topic>Digital signal processing</topic><topic>Discrete Fourier transforms</topic><topic>Fast Fourier transformations</topic><topic>FFT</topic><topic>Fourier transforms</topic><topic>Hardware</topic><topic>hirschman transform</topic><topic>HOT</topic><topic>Noise reduction</topic><topic>signal processing</topic><topic>Signal processing algorithms</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Dingli</creatorcontrib><creatorcontrib>DeBrunner, Linda S.</creatorcontrib><creatorcontrib>DeBrunner, Victor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Dingli</au><au>DeBrunner, Linda S.</au><au>DeBrunner, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Computing the Discrete Hirschman Transform</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2020</date><risdate>2020</risdate><volume>68</volume><spage>6444</spage><epage>6452</epage><pages>6444-6452</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The Discrete Hirschman Transform (DHT) is a generalization of the entropy-based Hirschman Transform that canonically represents digital signals with sparse basis functions. The DHT is computationally attractive in providing the flexibility in hardware implementations since it has a sparse structure that is similar to that of the Discrete Fourier Transform (DFT) basis. This Hirschman-based algorithm has been widely applied in many digital signal processing algorithms such as denoising, filtering, and linear convolution. In this paper, we have developed two fast algorithms: the radix-2 and radix-4 DHT algorithms. These efficient algorithms significantly reduce the number of nontrivial real computations when compared to the original DHT algorithm and other popular Fast Fourier Transforms (FFTs). We show that it is feasible to realize our new algorithms in hardware through the use of a repetitive application of butterfly computations in a structure that will be familiar to those already working with the similar FFT algorithms. Our proposed algorithms reduce the number of nontrivial real computations while efficiently using available hardware resources.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2020.3037402</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2198-2552</orcidid><orcidid>https://orcid.org/0000-0001-9926-8602</orcidid><orcidid>https://orcid.org/0000-0003-1633-7233</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2020, Vol.68, p.6444-6452 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_9257109 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm Algorithms Basis functions computational complexity Computational efficiency Convolution DHT Digital signal processing Discrete Fourier transforms Fast Fourier transformations FFT Fourier transforms Hardware hirschman transform HOT Noise reduction signal processing Signal processing algorithms Transforms |
title | On Computing the Discrete Hirschman Transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Computing%20the%20Discrete%20Hirschman%20Transform&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Xue,%20Dingli&rft.date=2020&rft.volume=68&rft.spage=6444&rft.epage=6452&rft.pages=6444-6452&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2020.3037402&rft_dat=%3Cproquest_RIE%3E2467293670%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467293670&rft_id=info:pmid/&rft_ieee_id=9257109&rfr_iscdi=true |