Extended Kalman Filter Based Linear Quadratic Regulator Control for Optical Wireless Communication Alignment
High-precision positioning of two underwater mobile robots based on laser beams alignment has been investigated in this work. Usually, the control problem addressed in laser beams aims to maintain the position of the receiver robot aligned with the transmitter robot despite the effects of noise and...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2020-12, Vol.12 (6), p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 12 |
creator | Alalwan, Asem Mohamed, Tadjine Chakir, Messaoud Laleg, Taous Meriem |
description | High-precision positioning of two underwater mobile robots based on laser beams alignment has been investigated in this work. Usually, the control problem addressed in laser beams aims to maintain the position of the receiver robot aligned with the transmitter robot despite the effects of noise and active disturbances. In this paper, a new state space model is proposed. The latter is more precise than the usual used two state space model [1]. Furthermore, an estimation based control strategy using Extended Kalman Filter Estimator (EKF) and Linear Quadratic Regulator (LQR) is proposed to achieve the control objectives. LQR controller is well known as optimal control design with better tuning flexibility along with intrinsic robustness properties such as noise and output disturbance rejections. The achieved performance of the proposed controller is compared to the conventional proportional (P), Proportional-Integral-Derivative (PID) and Proportional-Integral (PI) controller to analyze the improvements and stability. In addition, an investigation of a sensitivity analysis is conducted to show robustness with different process noise variances of LQR controller. |
doi_str_mv | 10.1109/JPHOT.2020.3037223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9257016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9257016</ieee_id><doaj_id>oai_doaj_org_article_b3762a2324d6403fb18c93cb84b2b96f</doaj_id><sourcerecordid>2468751142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-6be8dc8fdfff12d49f79cc06979740d741e08d389078a6fc8a98783e081ca21b3</originalsourceid><addsrcrecordid>eNpNUV1rVDEUvIiCtfoH9CXg8675uvl4rEtrqwurUvEx5OZjyZKbrEkutP_etFtKn85h5sycgRmGjwiuEYLyy_ef17vbNYYYrgkkHGPyajhDkpIVZOP4-sX-dnhX6wFCJtEoz4Z4eddcss6CHzrOOoGrEJsr4KuuHduG5HQBvxZti27BgN9uv0TdcgGbnFrJEfi-746d0xH8DcVFV2sn53lJHWshJ3ARwz7NLrX3wxuvY3Ufnub58Ofq8nZzvdruvt1sLrYrQ-HYVmxywhrhrfceYUul59KYnphLTqHlFDkoLBEScqGZN0JLwQXpIDIao4mcDzcnX5v1QR1LmHW5V1kH9Qjksle69MjRqYlwhjUmmFpGIfETEkYSMwk64Uky370-n7yOJf9bXG3qkJeSenyFKRN8RIjifoVPV6bkWovzz18RVA8NqceG1END6qmhLvp0EgXn3LNA4pFDxMh_4HONJA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468751142</pqid></control><display><type>article</type><title>Extended Kalman Filter Based Linear Quadratic Regulator Control for Optical Wireless Communication Alignment</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alalwan, Asem ; Mohamed, Tadjine ; Chakir, Messaoud ; Laleg, Taous Meriem</creator><creatorcontrib>Alalwan, Asem ; Mohamed, Tadjine ; Chakir, Messaoud ; Laleg, Taous Meriem</creatorcontrib><description>High-precision positioning of two underwater mobile robots based on laser beams alignment has been investigated in this work. Usually, the control problem addressed in laser beams aims to maintain the position of the receiver robot aligned with the transmitter robot despite the effects of noise and active disturbances. In this paper, a new state space model is proposed. The latter is more precise than the usual used two state space model [1]. Furthermore, an estimation based control strategy using Extended Kalman Filter Estimator (EKF) and Linear Quadratic Regulator (LQR) is proposed to achieve the control objectives. LQR controller is well known as optimal control design with better tuning flexibility along with intrinsic robustness properties such as noise and output disturbance rejections. The achieved performance of the proposed controller is compared to the conventional proportional (P), Proportional-Integral-Derivative (PID) and Proportional-Integral (PI) controller to analyze the improvements and stability. In addition, an investigation of a sensitivity analysis is conducted to show robustness with different process noise variances of LQR controller.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2020.3037223</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alignment ; Control design ; Control stability ; Controllers ; Extended Kalman filter ; extended kalman filter (EKF) ; Kalman filters ; Laser beams ; Linear quadratic regulator ; linear quadratic regulator (LQR) ; Noise ; Optimal control ; Proportional integral derivative ; Robots ; Robustness ; Sensitivity analysis ; Stability analysis ; State space models ; Transmitters ; Underwater communication ; underwater wireless optical communication (UWOC) ; Wireless communication ; Wireless communications</subject><ispartof>IEEE photonics journal, 2020-12, Vol.12 (6), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-6be8dc8fdfff12d49f79cc06979740d741e08d389078a6fc8a98783e081ca21b3</citedby><cites>FETCH-LOGICAL-c405t-6be8dc8fdfff12d49f79cc06979740d741e08d389078a6fc8a98783e081ca21b3</cites><orcidid>0000-0001-5944-0121 ; 0000-0001-7671-143X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9257016$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Alalwan, Asem</creatorcontrib><creatorcontrib>Mohamed, Tadjine</creatorcontrib><creatorcontrib>Chakir, Messaoud</creatorcontrib><creatorcontrib>Laleg, Taous Meriem</creatorcontrib><title>Extended Kalman Filter Based Linear Quadratic Regulator Control for Optical Wireless Communication Alignment</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>High-precision positioning of two underwater mobile robots based on laser beams alignment has been investigated in this work. Usually, the control problem addressed in laser beams aims to maintain the position of the receiver robot aligned with the transmitter robot despite the effects of noise and active disturbances. In this paper, a new state space model is proposed. The latter is more precise than the usual used two state space model [1]. Furthermore, an estimation based control strategy using Extended Kalman Filter Estimator (EKF) and Linear Quadratic Regulator (LQR) is proposed to achieve the control objectives. LQR controller is well known as optimal control design with better tuning flexibility along with intrinsic robustness properties such as noise and output disturbance rejections. The achieved performance of the proposed controller is compared to the conventional proportional (P), Proportional-Integral-Derivative (PID) and Proportional-Integral (PI) controller to analyze the improvements and stability. In addition, an investigation of a sensitivity analysis is conducted to show robustness with different process noise variances of LQR controller.</description><subject>Alignment</subject><subject>Control design</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Extended Kalman filter</subject><subject>extended kalman filter (EKF)</subject><subject>Kalman filters</subject><subject>Laser beams</subject><subject>Linear quadratic regulator</subject><subject>linear quadratic regulator (LQR)</subject><subject>Noise</subject><subject>Optimal control</subject><subject>Proportional integral derivative</subject><subject>Robots</subject><subject>Robustness</subject><subject>Sensitivity analysis</subject><subject>Stability analysis</subject><subject>State space models</subject><subject>Transmitters</subject><subject>Underwater communication</subject><subject>underwater wireless optical communication (UWOC)</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rVDEUvIiCtfoH9CXg8675uvl4rEtrqwurUvEx5OZjyZKbrEkutP_etFtKn85h5sycgRmGjwiuEYLyy_ef17vbNYYYrgkkHGPyajhDkpIVZOP4-sX-dnhX6wFCJtEoz4Z4eddcss6CHzrOOoGrEJsr4KuuHduG5HQBvxZti27BgN9uv0TdcgGbnFrJEfi-746d0xH8DcVFV2sn53lJHWshJ3ARwz7NLrX3wxuvY3Ufnub58Ofq8nZzvdruvt1sLrYrQ-HYVmxywhrhrfceYUul59KYnphLTqHlFDkoLBEScqGZN0JLwQXpIDIao4mcDzcnX5v1QR1LmHW5V1kH9Qjksle69MjRqYlwhjUmmFpGIfETEkYSMwk64Uky370-n7yOJf9bXG3qkJeSenyFKRN8RIjifoVPV6bkWovzz18RVA8NqceG1END6qmhLvp0EgXn3LNA4pFDxMh_4HONJA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Alalwan, Asem</creator><creator>Mohamed, Tadjine</creator><creator>Chakir, Messaoud</creator><creator>Laleg, Taous Meriem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5944-0121</orcidid><orcidid>https://orcid.org/0000-0001-7671-143X</orcidid></search><sort><creationdate>20201201</creationdate><title>Extended Kalman Filter Based Linear Quadratic Regulator Control for Optical Wireless Communication Alignment</title><author>Alalwan, Asem ; Mohamed, Tadjine ; Chakir, Messaoud ; Laleg, Taous Meriem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-6be8dc8fdfff12d49f79cc06979740d741e08d389078a6fc8a98783e081ca21b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alignment</topic><topic>Control design</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Extended Kalman filter</topic><topic>extended kalman filter (EKF)</topic><topic>Kalman filters</topic><topic>Laser beams</topic><topic>Linear quadratic regulator</topic><topic>linear quadratic regulator (LQR)</topic><topic>Noise</topic><topic>Optimal control</topic><topic>Proportional integral derivative</topic><topic>Robots</topic><topic>Robustness</topic><topic>Sensitivity analysis</topic><topic>Stability analysis</topic><topic>State space models</topic><topic>Transmitters</topic><topic>Underwater communication</topic><topic>underwater wireless optical communication (UWOC)</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alalwan, Asem</creatorcontrib><creatorcontrib>Mohamed, Tadjine</creatorcontrib><creatorcontrib>Chakir, Messaoud</creatorcontrib><creatorcontrib>Laleg, Taous Meriem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alalwan, Asem</au><au>Mohamed, Tadjine</au><au>Chakir, Messaoud</au><au>Laleg, Taous Meriem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Kalman Filter Based Linear Quadratic Regulator Control for Optical Wireless Communication Alignment</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>12</volume><issue>6</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>High-precision positioning of two underwater mobile robots based on laser beams alignment has been investigated in this work. Usually, the control problem addressed in laser beams aims to maintain the position of the receiver robot aligned with the transmitter robot despite the effects of noise and active disturbances. In this paper, a new state space model is proposed. The latter is more precise than the usual used two state space model [1]. Furthermore, an estimation based control strategy using Extended Kalman Filter Estimator (EKF) and Linear Quadratic Regulator (LQR) is proposed to achieve the control objectives. LQR controller is well known as optimal control design with better tuning flexibility along with intrinsic robustness properties such as noise and output disturbance rejections. The achieved performance of the proposed controller is compared to the conventional proportional (P), Proportional-Integral-Derivative (PID) and Proportional-Integral (PI) controller to analyze the improvements and stability. In addition, an investigation of a sensitivity analysis is conducted to show robustness with different process noise variances of LQR controller.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2020.3037223</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5944-0121</orcidid><orcidid>https://orcid.org/0000-0001-7671-143X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2020-12, Vol.12 (6), p.1-12 |
issn | 1943-0655 1943-0655 1943-0647 |
language | eng |
recordid | cdi_ieee_primary_9257016 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Alignment Control design Control stability Controllers Extended Kalman filter extended kalman filter (EKF) Kalman filters Laser beams Linear quadratic regulator linear quadratic regulator (LQR) Noise Optimal control Proportional integral derivative Robots Robustness Sensitivity analysis Stability analysis State space models Transmitters Underwater communication underwater wireless optical communication (UWOC) Wireless communication Wireless communications |
title | Extended Kalman Filter Based Linear Quadratic Regulator Control for Optical Wireless Communication Alignment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Kalman%20Filter%20Based%20Linear%20Quadratic%20Regulator%20Control%20for%20Optical%20Wireless%20Communication%20Alignment&rft.jtitle=IEEE%20photonics%20journal&rft.au=Alalwan,%20Asem&rft.date=2020-12-01&rft.volume=12&rft.issue=6&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2020.3037223&rft_dat=%3Cproquest_ieee_%3E2468751142%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468751142&rft_id=info:pmid/&rft_ieee_id=9257016&rft_doaj_id=oai_doaj_org_article_b3762a2324d6403fb18c93cb84b2b96f&rfr_iscdi=true |