Comparative Analysis of Vibration and Noise in IPMSM Considering the Effect of MTPA Control Algorithms for Electric Vehicles

For many servosystems in electric vehicles (EVs), high-performance controls of permanent magnet synchronous motor (PMSM) drives are widely used due to their high efficiency and low vibration and noise. In order to ensure the high efficiency of the servosystems, some online and offline maximum torque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2021-06, Vol.36 (6), p.6850-6862
Hauptverfasser: Han, Zexiu, Liu, Jinglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6862
container_issue 6
container_start_page 6850
container_title IEEE transactions on power electronics
container_volume 36
creator Han, Zexiu
Liu, Jinglin
description For many servosystems in electric vehicles (EVs), high-performance controls of permanent magnet synchronous motor (PMSM) drives are widely used due to their high efficiency and low vibration and noise. In order to ensure the high efficiency of the servosystems, some online and offline maximum torque per ampere (MTPA) control strategies are proposed; meanwhile, the vibration and noise of interior PMSMs (IPMSMs) in these servosystems for EVs must be smooth and soft. In this article, the vibration and noise of the IPMSM based on MTPA control algorithms are evaluated and compared. First, the influence of the voltage inverter on the noise of IPMSM is presented in detail and the relationship between the harmonic frequencies of the air gap magnetic force and the vibration frequencies of the IPMSM is investigated. Then, combined with this relationship, the effect principle of the control strategies on the magnetic vibration of the IPMSMs is defined. Based on this definition, the operation process and noise mechanism of different control methods are discussed. Finally, the performance of the vibration and noise under classical field-oriented control, offline MTPA control, and online MTPA control is concluded. With the comprehensive analysis and overview provided in this article, it is significant to guide the selection of a high-performance control method for servosystems in EVs.
doi_str_mv 10.1109/TPEL.2020.3036402
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9250586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9250586</ieee_id><sourcerecordid>2487438230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bd8965ea628e415a37a8990c076b12224f4d7de399b81fbe4dd85d5104d69d7c3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6-5Fk91hK_YBWC1avYZOdtFvSbN2NguCPN6HiaWDmeQfeh5BrBhPGQN-tV_PFhAOHiQCRSeAnZMS0ZAkwyE_JCJRKE6W1OCcXMe4AmEyBjcjPzO8PJpjOfSGdtqb5ji5SX9N3Vw5b31LTWvrsXUTqWvq0Wr4u6cy30VkMrt3Qbot0XtdYdUNsuV5Nh3MXfEOnzcYH1233kdY-0HnTQ8FV9B23rmowXpKz2jQRr_7mmLzdz9ezx2Tx8vA0my6SimvRJaVVOkvRZFyhZKkRuembQAV5VjLOuaylzS0KrUvF6hKltSq1KQNpM23zSozJ7fHvIfiPT4xdsfOfoS8bCy5VLoXivbUxYUeqCj7GgHVxCG5vwnfBoBgkF4PkYpBc_EnuMzfHjEPEf17zFFKViV9l2ngq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487438230</pqid></control><display><type>article</type><title>Comparative Analysis of Vibration and Noise in IPMSM Considering the Effect of MTPA Control Algorithms for Electric Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Zexiu ; Liu, Jinglin</creator><creatorcontrib>Han, Zexiu ; Liu, Jinglin</creatorcontrib><description>For many servosystems in electric vehicles (EVs), high-performance controls of permanent magnet synchronous motor (PMSM) drives are widely used due to their high efficiency and low vibration and noise. In order to ensure the high efficiency of the servosystems, some online and offline maximum torque per ampere (MTPA) control strategies are proposed; meanwhile, the vibration and noise of interior PMSMs (IPMSMs) in these servosystems for EVs must be smooth and soft. In this article, the vibration and noise of the IPMSM based on MTPA control algorithms are evaluated and compared. First, the influence of the voltage inverter on the noise of IPMSM is presented in detail and the relationship between the harmonic frequencies of the air gap magnetic force and the vibration frequencies of the IPMSM is investigated. Then, combined with this relationship, the effect principle of the control strategies on the magnetic vibration of the IPMSMs is defined. Based on this definition, the operation process and noise mechanism of different control methods are discussed. Finally, the performance of the vibration and noise under classical field-oriented control, offline MTPA control, and online MTPA control is concluded. With the comprehensive analysis and overview provided in this article, it is significant to guide the selection of a high-performance control method for servosystems in EVs.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2020.3036402</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air gaps ; Algorithms ; Control algorithms ; Control methods ; Electric vehicles ; Electromagnetic forces ; Force ; Harmonic analysis ; Interior permanent magnet synchronous motor (IPMSM) ; Magnetic fields ; maximum torque per ampere (MTPA) ; noise ; Noise control ; Permanent magnets ; Servocontrol ; Stators ; Synchronous motors ; vibration ; Vibration analysis ; Vibrations</subject><ispartof>IEEE transactions on power electronics, 2021-06, Vol.36 (6), p.6850-6862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bd8965ea628e415a37a8990c076b12224f4d7de399b81fbe4dd85d5104d69d7c3</citedby><cites>FETCH-LOGICAL-c293t-bd8965ea628e415a37a8990c076b12224f4d7de399b81fbe4dd85d5104d69d7c3</cites><orcidid>0000-0002-9905-3887 ; 0000-0001-9752-3622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9250586$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9250586$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Zexiu</creatorcontrib><creatorcontrib>Liu, Jinglin</creatorcontrib><title>Comparative Analysis of Vibration and Noise in IPMSM Considering the Effect of MTPA Control Algorithms for Electric Vehicles</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>For many servosystems in electric vehicles (EVs), high-performance controls of permanent magnet synchronous motor (PMSM) drives are widely used due to their high efficiency and low vibration and noise. In order to ensure the high efficiency of the servosystems, some online and offline maximum torque per ampere (MTPA) control strategies are proposed; meanwhile, the vibration and noise of interior PMSMs (IPMSMs) in these servosystems for EVs must be smooth and soft. In this article, the vibration and noise of the IPMSM based on MTPA control algorithms are evaluated and compared. First, the influence of the voltage inverter on the noise of IPMSM is presented in detail and the relationship between the harmonic frequencies of the air gap magnetic force and the vibration frequencies of the IPMSM is investigated. Then, combined with this relationship, the effect principle of the control strategies on the magnetic vibration of the IPMSMs is defined. Based on this definition, the operation process and noise mechanism of different control methods are discussed. Finally, the performance of the vibration and noise under classical field-oriented control, offline MTPA control, and online MTPA control is concluded. With the comprehensive analysis and overview provided in this article, it is significant to guide the selection of a high-performance control method for servosystems in EVs.</description><subject>Air gaps</subject><subject>Algorithms</subject><subject>Control algorithms</subject><subject>Control methods</subject><subject>Electric vehicles</subject><subject>Electromagnetic forces</subject><subject>Force</subject><subject>Harmonic analysis</subject><subject>Interior permanent magnet synchronous motor (IPMSM)</subject><subject>Magnetic fields</subject><subject>maximum torque per ampere (MTPA)</subject><subject>noise</subject><subject>Noise control</subject><subject>Permanent magnets</subject><subject>Servocontrol</subject><subject>Stators</subject><subject>Synchronous motors</subject><subject>vibration</subject><subject>Vibration analysis</subject><subject>Vibrations</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6-5Fk91hK_YBWC1avYZOdtFvSbN2NguCPN6HiaWDmeQfeh5BrBhPGQN-tV_PFhAOHiQCRSeAnZMS0ZAkwyE_JCJRKE6W1OCcXMe4AmEyBjcjPzO8PJpjOfSGdtqb5ji5SX9N3Vw5b31LTWvrsXUTqWvq0Wr4u6cy30VkMrt3Qbot0XtdYdUNsuV5Nh3MXfEOnzcYH1233kdY-0HnTQ8FV9B23rmowXpKz2jQRr_7mmLzdz9ezx2Tx8vA0my6SimvRJaVVOkvRZFyhZKkRuembQAV5VjLOuaylzS0KrUvF6hKltSq1KQNpM23zSozJ7fHvIfiPT4xdsfOfoS8bCy5VLoXivbUxYUeqCj7GgHVxCG5vwnfBoBgkF4PkYpBc_EnuMzfHjEPEf17zFFKViV9l2ngq</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Han, Zexiu</creator><creator>Liu, Jinglin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9905-3887</orcidid><orcidid>https://orcid.org/0000-0001-9752-3622</orcidid></search><sort><creationdate>20210601</creationdate><title>Comparative Analysis of Vibration and Noise in IPMSM Considering the Effect of MTPA Control Algorithms for Electric Vehicles</title><author>Han, Zexiu ; Liu, Jinglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bd8965ea628e415a37a8990c076b12224f4d7de399b81fbe4dd85d5104d69d7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air gaps</topic><topic>Algorithms</topic><topic>Control algorithms</topic><topic>Control methods</topic><topic>Electric vehicles</topic><topic>Electromagnetic forces</topic><topic>Force</topic><topic>Harmonic analysis</topic><topic>Interior permanent magnet synchronous motor (IPMSM)</topic><topic>Magnetic fields</topic><topic>maximum torque per ampere (MTPA)</topic><topic>noise</topic><topic>Noise control</topic><topic>Permanent magnets</topic><topic>Servocontrol</topic><topic>Stators</topic><topic>Synchronous motors</topic><topic>vibration</topic><topic>Vibration analysis</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Zexiu</creatorcontrib><creatorcontrib>Liu, Jinglin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Zexiu</au><au>Liu, Jinglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Analysis of Vibration and Noise in IPMSM Considering the Effect of MTPA Control Algorithms for Electric Vehicles</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>36</volume><issue>6</issue><spage>6850</spage><epage>6862</epage><pages>6850-6862</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>For many servosystems in electric vehicles (EVs), high-performance controls of permanent magnet synchronous motor (PMSM) drives are widely used due to their high efficiency and low vibration and noise. In order to ensure the high efficiency of the servosystems, some online and offline maximum torque per ampere (MTPA) control strategies are proposed; meanwhile, the vibration and noise of interior PMSMs (IPMSMs) in these servosystems for EVs must be smooth and soft. In this article, the vibration and noise of the IPMSM based on MTPA control algorithms are evaluated and compared. First, the influence of the voltage inverter on the noise of IPMSM is presented in detail and the relationship between the harmonic frequencies of the air gap magnetic force and the vibration frequencies of the IPMSM is investigated. Then, combined with this relationship, the effect principle of the control strategies on the magnetic vibration of the IPMSMs is defined. Based on this definition, the operation process and noise mechanism of different control methods are discussed. Finally, the performance of the vibration and noise under classical field-oriented control, offline MTPA control, and online MTPA control is concluded. With the comprehensive analysis and overview provided in this article, it is significant to guide the selection of a high-performance control method for servosystems in EVs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2020.3036402</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9905-3887</orcidid><orcidid>https://orcid.org/0000-0001-9752-3622</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2021-06, Vol.36 (6), p.6850-6862
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_9250586
source IEEE Electronic Library (IEL)
subjects Air gaps
Algorithms
Control algorithms
Control methods
Electric vehicles
Electromagnetic forces
Force
Harmonic analysis
Interior permanent magnet synchronous motor (IPMSM)
Magnetic fields
maximum torque per ampere (MTPA)
noise
Noise control
Permanent magnets
Servocontrol
Stators
Synchronous motors
vibration
Vibration analysis
Vibrations
title Comparative Analysis of Vibration and Noise in IPMSM Considering the Effect of MTPA Control Algorithms for Electric Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Analysis%20of%20Vibration%20and%20Noise%20in%20IPMSM%20Considering%20the%20Effect%20of%20MTPA%20Control%20Algorithms%20for%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Han,%20Zexiu&rft.date=2021-06-01&rft.volume=36&rft.issue=6&rft.spage=6850&rft.epage=6862&rft.pages=6850-6862&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2020.3036402&rft_dat=%3Cproquest_RIE%3E2487438230%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487438230&rft_id=info:pmid/&rft_ieee_id=9250586&rfr_iscdi=true