Cascaded-Dispersed-Resonator-Based Off-Nominal-Frequency Harmonics Filtering
Harmonics filtering for nominal frequencies is well-known and plain task. Discrete Fourier transform (DFT), Taylor-Fourier transformation (TFT), and cascaded integrator-comb (CIC) filters are some of the widely used digital signal processing techniques. However, in case of frequency deviation, this...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 70 |
creator | Korac, Vukman Z. Kusljevic, Miodrag D. |
description | Harmonics filtering for nominal frequencies is well-known and plain task. Discrete Fourier transform (DFT), Taylor-Fourier transformation (TFT), and cascaded integrator-comb (CIC) filters are some of the widely used digital signal processing techniques. However, in case of frequency deviation, this task becomes much more complex. The reason is that the harmonic frequency deviation from the nominal one is proportional to the harmonic order. This article proposes the cascaded-dispersed-resonator (CDR)-based filter technique for off-nominal frequency harmonics analysis, similar to the multiple-resonator (MR)-based filters. The technique previously used for the synthesis of the so-called quasi MR-based filters is applied. Unlike the previous intention to design filters with frequency responses as much close to true MR filters as possible, which caused putting poles in the cascade as much close to each other as possible, here it is necessary to place poles with a displacement width necessary to cover the whole band of the fundamental frequency deviation proportional to the orders of the harmonics. |
doi_str_mv | 10.1109/TIM.2020.3035396 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9247154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9247154</ieee_id><sourcerecordid>2472318694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-67a663efeceee8fa55b7b207d92caf01ad2fd6ad695596691cc9606bf10cb0ce3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvBc-ok2STNUau1hdWC1HPIZhNJaTc12R76701p8TQz8H3D4yF0T2BMCKin1eJjTIHCmAHjTIkLNCCcS6yEoJdoAEAmWFVcXKObnNcAIEUlB6iemmxN61r8GvLOpVy2L5djZ_qY8Isp92jpPf6M29CZDZ4l97t3nT2M5iZtYxdsHs3CpncpdD-36MqbTXZ35zlE37O31XSO6-X7YvpcY0sV6bGQRgjmvLPOuYk3nDeyoSBbRa3xQExLfStMKxTnBV8Ra5UA0XgCtgHr2BA9nv7uUiw0udfruE8FL2taScrIRKiqpOCUsinmnJzXuxS2Jh00AX10poszfXSmz85K5eFUCYXsP67KU8Ir9gcjaGiV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472318694</pqid></control><display><type>article</type><title>Cascaded-Dispersed-Resonator-Based Off-Nominal-Frequency Harmonics Filtering</title><source>IEEE Electronic Library (IEL)</source><creator>Korac, Vukman Z. ; Kusljevic, Miodrag D.</creator><creatorcontrib>Korac, Vukman Z. ; Kusljevic, Miodrag D.</creatorcontrib><description>Harmonics filtering for nominal frequencies is well-known and plain task. Discrete Fourier transform (DFT), Taylor-Fourier transformation (TFT), and cascaded integrator-comb (CIC) filters are some of the widely used digital signal processing techniques. However, in case of frequency deviation, this task becomes much more complex. The reason is that the harmonic frequency deviation from the nominal one is proportional to the harmonic order. This article proposes the cascaded-dispersed-resonator (CDR)-based filter technique for off-nominal frequency harmonics analysis, similar to the multiple-resonator (MR)-based filters. The technique previously used for the synthesis of the so-called quasi MR-based filters is applied. Unlike the previous intention to design filters with frequency responses as much close to true MR filters as possible, which caused putting poles in the cascade as much close to each other as possible, here it is necessary to place poles with a displacement width necessary to cover the whole band of the fundamental frequency deviation proportional to the orders of the harmonics.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2020.3035396</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attenuation ; Cascaded-dispersed-resonator (CDR)-based filters ; Digital signal processing ; discrete Fourier transform (DFT) ; Dispersion ; Filtration ; Finite impulse response filters ; Fourier transforms ; Frequency analysis ; Frequency deviation ; Frequency estimation ; Harmonic analysis ; Harmonics ; Lagrange interpolation formula ; off-nominal frequency ; Poles ; Power harmonic filters ; Resonant frequencies ; Resonant frequency ; Resonators</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-3</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-67a663efeceee8fa55b7b207d92caf01ad2fd6ad695596691cc9606bf10cb0ce3</citedby><cites>FETCH-LOGICAL-c291t-67a663efeceee8fa55b7b207d92caf01ad2fd6ad695596691cc9606bf10cb0ce3</cites><orcidid>0000-0001-9281-5650 ; 0000-0002-8321-8878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9247154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9247154$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Korac, Vukman Z.</creatorcontrib><creatorcontrib>Kusljevic, Miodrag D.</creatorcontrib><title>Cascaded-Dispersed-Resonator-Based Off-Nominal-Frequency Harmonics Filtering</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Harmonics filtering for nominal frequencies is well-known and plain task. Discrete Fourier transform (DFT), Taylor-Fourier transformation (TFT), and cascaded integrator-comb (CIC) filters are some of the widely used digital signal processing techniques. However, in case of frequency deviation, this task becomes much more complex. The reason is that the harmonic frequency deviation from the nominal one is proportional to the harmonic order. This article proposes the cascaded-dispersed-resonator (CDR)-based filter technique for off-nominal frequency harmonics analysis, similar to the multiple-resonator (MR)-based filters. The technique previously used for the synthesis of the so-called quasi MR-based filters is applied. Unlike the previous intention to design filters with frequency responses as much close to true MR filters as possible, which caused putting poles in the cascade as much close to each other as possible, here it is necessary to place poles with a displacement width necessary to cover the whole band of the fundamental frequency deviation proportional to the orders of the harmonics.</description><subject>Attenuation</subject><subject>Cascaded-dispersed-resonator (CDR)-based filters</subject><subject>Digital signal processing</subject><subject>discrete Fourier transform (DFT)</subject><subject>Dispersion</subject><subject>Filtration</subject><subject>Finite impulse response filters</subject><subject>Fourier transforms</subject><subject>Frequency analysis</subject><subject>Frequency deviation</subject><subject>Frequency estimation</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>Lagrange interpolation formula</subject><subject>off-nominal frequency</subject><subject>Poles</subject><subject>Power harmonic filters</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Resonators</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvBc-ok2STNUau1hdWC1HPIZhNJaTc12R76701p8TQz8H3D4yF0T2BMCKin1eJjTIHCmAHjTIkLNCCcS6yEoJdoAEAmWFVcXKObnNcAIEUlB6iemmxN61r8GvLOpVy2L5djZ_qY8Isp92jpPf6M29CZDZ4l97t3nT2M5iZtYxdsHs3CpncpdD-36MqbTXZ35zlE37O31XSO6-X7YvpcY0sV6bGQRgjmvLPOuYk3nDeyoSBbRa3xQExLfStMKxTnBV8Ra5UA0XgCtgHr2BA9nv7uUiw0udfruE8FL2taScrIRKiqpOCUsinmnJzXuxS2Jh00AX10poszfXSmz85K5eFUCYXsP67KU8Ir9gcjaGiV</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Korac, Vukman Z.</creator><creator>Kusljevic, Miodrag D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9281-5650</orcidid><orcidid>https://orcid.org/0000-0002-8321-8878</orcidid></search><sort><creationdate>2021</creationdate><title>Cascaded-Dispersed-Resonator-Based Off-Nominal-Frequency Harmonics Filtering</title><author>Korac, Vukman Z. ; Kusljevic, Miodrag D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-67a663efeceee8fa55b7b207d92caf01ad2fd6ad695596691cc9606bf10cb0ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attenuation</topic><topic>Cascaded-dispersed-resonator (CDR)-based filters</topic><topic>Digital signal processing</topic><topic>discrete Fourier transform (DFT)</topic><topic>Dispersion</topic><topic>Filtration</topic><topic>Finite impulse response filters</topic><topic>Fourier transforms</topic><topic>Frequency analysis</topic><topic>Frequency deviation</topic><topic>Frequency estimation</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>Lagrange interpolation formula</topic><topic>off-nominal frequency</topic><topic>Poles</topic><topic>Power harmonic filters</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Resonators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korac, Vukman Z.</creatorcontrib><creatorcontrib>Kusljevic, Miodrag D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Korac, Vukman Z.</au><au>Kusljevic, Miodrag D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cascaded-Dispersed-Resonator-Based Off-Nominal-Frequency Harmonics Filtering</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>3</epage><pages>1-3</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Harmonics filtering for nominal frequencies is well-known and plain task. Discrete Fourier transform (DFT), Taylor-Fourier transformation (TFT), and cascaded integrator-comb (CIC) filters are some of the widely used digital signal processing techniques. However, in case of frequency deviation, this task becomes much more complex. The reason is that the harmonic frequency deviation from the nominal one is proportional to the harmonic order. This article proposes the cascaded-dispersed-resonator (CDR)-based filter technique for off-nominal frequency harmonics analysis, similar to the multiple-resonator (MR)-based filters. The technique previously used for the synthesis of the so-called quasi MR-based filters is applied. Unlike the previous intention to design filters with frequency responses as much close to true MR filters as possible, which caused putting poles in the cascade as much close to each other as possible, here it is necessary to place poles with a displacement width necessary to cover the whole band of the fundamental frequency deviation proportional to the orders of the harmonics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2020.3035396</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-9281-5650</orcidid><orcidid>https://orcid.org/0000-0002-8321-8878</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-3 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_9247154 |
source | IEEE Electronic Library (IEL) |
subjects | Attenuation Cascaded-dispersed-resonator (CDR)-based filters Digital signal processing discrete Fourier transform (DFT) Dispersion Filtration Finite impulse response filters Fourier transforms Frequency analysis Frequency deviation Frequency estimation Harmonic analysis Harmonics Lagrange interpolation formula off-nominal frequency Poles Power harmonic filters Resonant frequencies Resonant frequency Resonators |
title | Cascaded-Dispersed-Resonator-Based Off-Nominal-Frequency Harmonics Filtering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cascaded-Dispersed-Resonator-Based%20Off-Nominal-Frequency%20Harmonics%20Filtering&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Korac,%20Vukman%20Z.&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2020.3035396&rft_dat=%3Cproquest_RIE%3E2472318694%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472318694&rft_id=info:pmid/&rft_ieee_id=9247154&rfr_iscdi=true |