Cascaded-Dispersed-Resonator-Based Off-Nominal-Frequency Harmonics Filtering

Harmonics filtering for nominal frequencies is well-known and plain task. Discrete Fourier transform (DFT), Taylor-Fourier transformation (TFT), and cascaded integrator-comb (CIC) filters are some of the widely used digital signal processing techniques. However, in case of frequency deviation, this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-3
Hauptverfasser: Korac, Vukman Z., Kusljevic, Miodrag D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 70
creator Korac, Vukman Z.
Kusljevic, Miodrag D.
description Harmonics filtering for nominal frequencies is well-known and plain task. Discrete Fourier transform (DFT), Taylor-Fourier transformation (TFT), and cascaded integrator-comb (CIC) filters are some of the widely used digital signal processing techniques. However, in case of frequency deviation, this task becomes much more complex. The reason is that the harmonic frequency deviation from the nominal one is proportional to the harmonic order. This article proposes the cascaded-dispersed-resonator (CDR)-based filter technique for off-nominal frequency harmonics analysis, similar to the multiple-resonator (MR)-based filters. The technique previously used for the synthesis of the so-called quasi MR-based filters is applied. Unlike the previous intention to design filters with frequency responses as much close to true MR filters as possible, which caused putting poles in the cascade as much close to each other as possible, here it is necessary to place poles with a displacement width necessary to cover the whole band of the fundamental frequency deviation proportional to the orders of the harmonics.
doi_str_mv 10.1109/TIM.2020.3035396
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9247154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9247154</ieee_id><sourcerecordid>2472318694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-67a663efeceee8fa55b7b207d92caf01ad2fd6ad695596691cc9606bf10cb0ce3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvBc-ok2STNUau1hdWC1HPIZhNJaTc12R76701p8TQz8H3D4yF0T2BMCKin1eJjTIHCmAHjTIkLNCCcS6yEoJdoAEAmWFVcXKObnNcAIEUlB6iemmxN61r8GvLOpVy2L5djZ_qY8Isp92jpPf6M29CZDZ4l97t3nT2M5iZtYxdsHs3CpncpdD-36MqbTXZ35zlE37O31XSO6-X7YvpcY0sV6bGQRgjmvLPOuYk3nDeyoSBbRa3xQExLfStMKxTnBV8Ra5UA0XgCtgHr2BA9nv7uUiw0udfruE8FL2taScrIRKiqpOCUsinmnJzXuxS2Jh00AX10poszfXSmz85K5eFUCYXsP67KU8Ir9gcjaGiV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472318694</pqid></control><display><type>article</type><title>Cascaded-Dispersed-Resonator-Based Off-Nominal-Frequency Harmonics Filtering</title><source>IEEE Electronic Library (IEL)</source><creator>Korac, Vukman Z. ; Kusljevic, Miodrag D.</creator><creatorcontrib>Korac, Vukman Z. ; Kusljevic, Miodrag D.</creatorcontrib><description>Harmonics filtering for nominal frequencies is well-known and plain task. Discrete Fourier transform (DFT), Taylor-Fourier transformation (TFT), and cascaded integrator-comb (CIC) filters are some of the widely used digital signal processing techniques. However, in case of frequency deviation, this task becomes much more complex. The reason is that the harmonic frequency deviation from the nominal one is proportional to the harmonic order. This article proposes the cascaded-dispersed-resonator (CDR)-based filter technique for off-nominal frequency harmonics analysis, similar to the multiple-resonator (MR)-based filters. The technique previously used for the synthesis of the so-called quasi MR-based filters is applied. Unlike the previous intention to design filters with frequency responses as much close to true MR filters as possible, which caused putting poles in the cascade as much close to each other as possible, here it is necessary to place poles with a displacement width necessary to cover the whole band of the fundamental frequency deviation proportional to the orders of the harmonics.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2020.3035396</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attenuation ; Cascaded-dispersed-resonator (CDR)-based filters ; Digital signal processing ; discrete Fourier transform (DFT) ; Dispersion ; Filtration ; Finite impulse response filters ; Fourier transforms ; Frequency analysis ; Frequency deviation ; Frequency estimation ; Harmonic analysis ; Harmonics ; Lagrange interpolation formula ; off-nominal frequency ; Poles ; Power harmonic filters ; Resonant frequencies ; Resonant frequency ; Resonators</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-3</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-67a663efeceee8fa55b7b207d92caf01ad2fd6ad695596691cc9606bf10cb0ce3</citedby><cites>FETCH-LOGICAL-c291t-67a663efeceee8fa55b7b207d92caf01ad2fd6ad695596691cc9606bf10cb0ce3</cites><orcidid>0000-0001-9281-5650 ; 0000-0002-8321-8878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9247154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9247154$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Korac, Vukman Z.</creatorcontrib><creatorcontrib>Kusljevic, Miodrag D.</creatorcontrib><title>Cascaded-Dispersed-Resonator-Based Off-Nominal-Frequency Harmonics Filtering</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Harmonics filtering for nominal frequencies is well-known and plain task. Discrete Fourier transform (DFT), Taylor-Fourier transformation (TFT), and cascaded integrator-comb (CIC) filters are some of the widely used digital signal processing techniques. However, in case of frequency deviation, this task becomes much more complex. The reason is that the harmonic frequency deviation from the nominal one is proportional to the harmonic order. This article proposes the cascaded-dispersed-resonator (CDR)-based filter technique for off-nominal frequency harmonics analysis, similar to the multiple-resonator (MR)-based filters. The technique previously used for the synthesis of the so-called quasi MR-based filters is applied. Unlike the previous intention to design filters with frequency responses as much close to true MR filters as possible, which caused putting poles in the cascade as much close to each other as possible, here it is necessary to place poles with a displacement width necessary to cover the whole band of the fundamental frequency deviation proportional to the orders of the harmonics.</description><subject>Attenuation</subject><subject>Cascaded-dispersed-resonator (CDR)-based filters</subject><subject>Digital signal processing</subject><subject>discrete Fourier transform (DFT)</subject><subject>Dispersion</subject><subject>Filtration</subject><subject>Finite impulse response filters</subject><subject>Fourier transforms</subject><subject>Frequency analysis</subject><subject>Frequency deviation</subject><subject>Frequency estimation</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>Lagrange interpolation formula</subject><subject>off-nominal frequency</subject><subject>Poles</subject><subject>Power harmonic filters</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Resonators</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvBc-ok2STNUau1hdWC1HPIZhNJaTc12R76701p8TQz8H3D4yF0T2BMCKin1eJjTIHCmAHjTIkLNCCcS6yEoJdoAEAmWFVcXKObnNcAIEUlB6iemmxN61r8GvLOpVy2L5djZ_qY8Isp92jpPf6M29CZDZ4l97t3nT2M5iZtYxdsHs3CpncpdD-36MqbTXZ35zlE37O31XSO6-X7YvpcY0sV6bGQRgjmvLPOuYk3nDeyoSBbRa3xQExLfStMKxTnBV8Ra5UA0XgCtgHr2BA9nv7uUiw0udfruE8FL2taScrIRKiqpOCUsinmnJzXuxS2Jh00AX10poszfXSmz85K5eFUCYXsP67KU8Ir9gcjaGiV</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Korac, Vukman Z.</creator><creator>Kusljevic, Miodrag D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9281-5650</orcidid><orcidid>https://orcid.org/0000-0002-8321-8878</orcidid></search><sort><creationdate>2021</creationdate><title>Cascaded-Dispersed-Resonator-Based Off-Nominal-Frequency Harmonics Filtering</title><author>Korac, Vukman Z. ; Kusljevic, Miodrag D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-67a663efeceee8fa55b7b207d92caf01ad2fd6ad695596691cc9606bf10cb0ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attenuation</topic><topic>Cascaded-dispersed-resonator (CDR)-based filters</topic><topic>Digital signal processing</topic><topic>discrete Fourier transform (DFT)</topic><topic>Dispersion</topic><topic>Filtration</topic><topic>Finite impulse response filters</topic><topic>Fourier transforms</topic><topic>Frequency analysis</topic><topic>Frequency deviation</topic><topic>Frequency estimation</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>Lagrange interpolation formula</topic><topic>off-nominal frequency</topic><topic>Poles</topic><topic>Power harmonic filters</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Resonators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korac, Vukman Z.</creatorcontrib><creatorcontrib>Kusljevic, Miodrag D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Korac, Vukman Z.</au><au>Kusljevic, Miodrag D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cascaded-Dispersed-Resonator-Based Off-Nominal-Frequency Harmonics Filtering</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>3</epage><pages>1-3</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Harmonics filtering for nominal frequencies is well-known and plain task. Discrete Fourier transform (DFT), Taylor-Fourier transformation (TFT), and cascaded integrator-comb (CIC) filters are some of the widely used digital signal processing techniques. However, in case of frequency deviation, this task becomes much more complex. The reason is that the harmonic frequency deviation from the nominal one is proportional to the harmonic order. This article proposes the cascaded-dispersed-resonator (CDR)-based filter technique for off-nominal frequency harmonics analysis, similar to the multiple-resonator (MR)-based filters. The technique previously used for the synthesis of the so-called quasi MR-based filters is applied. Unlike the previous intention to design filters with frequency responses as much close to true MR filters as possible, which caused putting poles in the cascade as much close to each other as possible, here it is necessary to place poles with a displacement width necessary to cover the whole band of the fundamental frequency deviation proportional to the orders of the harmonics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2020.3035396</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-9281-5650</orcidid><orcidid>https://orcid.org/0000-0002-8321-8878</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-3
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_9247154
source IEEE Electronic Library (IEL)
subjects Attenuation
Cascaded-dispersed-resonator (CDR)-based filters
Digital signal processing
discrete Fourier transform (DFT)
Dispersion
Filtration
Finite impulse response filters
Fourier transforms
Frequency analysis
Frequency deviation
Frequency estimation
Harmonic analysis
Harmonics
Lagrange interpolation formula
off-nominal frequency
Poles
Power harmonic filters
Resonant frequencies
Resonant frequency
Resonators
title Cascaded-Dispersed-Resonator-Based Off-Nominal-Frequency Harmonics Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cascaded-Dispersed-Resonator-Based%20Off-Nominal-Frequency%20Harmonics%20Filtering&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Korac,%20Vukman%20Z.&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2020.3035396&rft_dat=%3Cproquest_RIE%3E2472318694%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472318694&rft_id=info:pmid/&rft_ieee_id=9247154&rfr_iscdi=true