An Efficient ECG Classification System Using Resource-Saving Architecture and Random Forest
This paper presents a resource-saving system to extract a few important features of electrocardiogram (ECG) signals. In addition, real-time classifiers are proposed as well to classify different types of arrhythmias via these features. The proposed feature extraction system is based on two delta-sig...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2021-06, Vol.25 (6), p.1904-1914 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1914 |
---|---|
container_issue | 6 |
container_start_page | 1904 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 25 |
creator | Kung, Bo-Han Hu, Po-Yuan Huang, Chiu-Chang Lee, Cheng-Che Yao, Chia-Yu Kuan, Chieh-Hsiung |
description | This paper presents a resource-saving system to extract a few important features of electrocardiogram (ECG) signals. In addition, real-time classifiers are proposed as well to classify different types of arrhythmias via these features. The proposed feature extraction system is based on two delta-sigma modulators adopting 250 Hz sampling rate and three wave detection algorithms to analyze outputs of the modulators. It extracts essential details of each heartbeat, and the details are encoded into 68 bits data that is only 1.48% of the other comparable methods. To evaluate our classification, we use a novel patient-specific training protocol in conjunction with the MIT-BIH database and the recommendation of the AAMI to train the classifiers. The classifiers are random forests that are designed to recognize two major types of arrhythmias. They are supraventricular ectopic beats (SVEB) and ventricular ectopic beats (VEB). The performance of the arrhythmia classification reaches to the F1 scores of 81.05% for SVEB and 97.07% for VEB, which are also comparable to the state-of-the-art methods. The method provides a reliable and accurate approach to analyze ECG signals. Additionally, it also possesses time-efficient, low-complexity, and low-memory-usage advantages. Benefiting from these advantages, the method can be applied to practical ECG applications, especially wearable healthcare devices and implanted medical devices, for wave detection and arrhythmia classification. |
doi_str_mv | 10.1109/JBHI.2020.3035191 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9246692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9246692</ieee_id><sourcerecordid>2457276378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3feb228e3198d48a0c6fef234aac157962cf727e0463d3c4f2478bb5d416ae9c3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoKtUfIIIEvHjZmq_NJsdaqlUEwY-Th5BmJxrp7mqyK_Tfm9LqwTlkJpPnnSQvQieUjCkl-vLuan47ZoSRMSe8pJruoENGpSoYI2r3t6ZaHKDjlD5IDpVbWu6jA84pl6VQh-h10uKZ98EFaHs8m97g6dKmFHLH9qFr8dMq9dDglxTaN_wIqRuig-LJfq_3k-jeQw-uHyJg29b4MS9dg6-7CKk_QnveLhMcb_MIvVzPnqfz4v7h5nY6uS8cF7ovuIcFYwo41aoWyhInPXjGhbWOlpWWzPmKVUCE5DV3wjNRqcWirAWVFrTjI3SxmfsZu68hX2yakBwsl7aFbkiGiTLrJa9URs__oR_5Q21-nWEll0pWpKKZohvKxS6lCN58xtDYuDKUmLX5Zm2-WZtvtuZnzdl28rBooP5T_FqdgdMNEADg71gzIaVm_AeNqobS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536867071</pqid></control><display><type>article</type><title>An Efficient ECG Classification System Using Resource-Saving Architecture and Random Forest</title><source>IEEE Electronic Library (IEL)</source><creator>Kung, Bo-Han ; Hu, Po-Yuan ; Huang, Chiu-Chang ; Lee, Cheng-Che ; Yao, Chia-Yu ; Kuan, Chieh-Hsiung</creator><creatorcontrib>Kung, Bo-Han ; Hu, Po-Yuan ; Huang, Chiu-Chang ; Lee, Cheng-Che ; Yao, Chia-Yu ; Kuan, Chieh-Hsiung</creatorcontrib><description>This paper presents a resource-saving system to extract a few important features of electrocardiogram (ECG) signals. In addition, real-time classifiers are proposed as well to classify different types of arrhythmias via these features. The proposed feature extraction system is based on two delta-sigma modulators adopting 250 Hz sampling rate and three wave detection algorithms to analyze outputs of the modulators. It extracts essential details of each heartbeat, and the details are encoded into 68 bits data that is only 1.48% of the other comparable methods. To evaluate our classification, we use a novel patient-specific training protocol in conjunction with the MIT-BIH database and the recommendation of the AAMI to train the classifiers. The classifiers are random forests that are designed to recognize two major types of arrhythmias. They are supraventricular ectopic beats (SVEB) and ventricular ectopic beats (VEB). The performance of the arrhythmia classification reaches to the F1 scores of 81.05% for SVEB and 97.07% for VEB, which are also comparable to the state-of-the-art methods. The method provides a reliable and accurate approach to analyze ECG signals. Additionally, it also possesses time-efficient, low-complexity, and low-memory-usage advantages. Benefiting from these advantages, the method can be applied to practical ECG applications, especially wearable healthcare devices and implanted medical devices, for wave detection and arrhythmia classification.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2020.3035191</identifier><identifier>PMID: 33136548</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Arrhythmia ; Bioinformatics ; Cardiac arrhythmia ; Classification ; Classifiers ; delta-sigma modulator ; Detection algorithms ; ECG classification ; EKG ; Electrocardiogram (ECG) ; Electrocardiography ; Feature extraction ; Heart ; Medical equipment ; Modulation ; Modulators ; Quantization (signal) ; random forest (RF) ; Ventricle</subject><ispartof>IEEE journal of biomedical and health informatics, 2021-06, Vol.25 (6), p.1904-1914</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3feb228e3198d48a0c6fef234aac157962cf727e0463d3c4f2478bb5d416ae9c3</citedby><cites>FETCH-LOGICAL-c349t-3feb228e3198d48a0c6fef234aac157962cf727e0463d3c4f2478bb5d416ae9c3</cites><orcidid>0000-0001-9771-041X ; 0000-0002-2191-7913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9246692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9246692$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33136548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kung, Bo-Han</creatorcontrib><creatorcontrib>Hu, Po-Yuan</creatorcontrib><creatorcontrib>Huang, Chiu-Chang</creatorcontrib><creatorcontrib>Lee, Cheng-Che</creatorcontrib><creatorcontrib>Yao, Chia-Yu</creatorcontrib><creatorcontrib>Kuan, Chieh-Hsiung</creatorcontrib><title>An Efficient ECG Classification System Using Resource-Saving Architecture and Random Forest</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>This paper presents a resource-saving system to extract a few important features of electrocardiogram (ECG) signals. In addition, real-time classifiers are proposed as well to classify different types of arrhythmias via these features. The proposed feature extraction system is based on two delta-sigma modulators adopting 250 Hz sampling rate and three wave detection algorithms to analyze outputs of the modulators. It extracts essential details of each heartbeat, and the details are encoded into 68 bits data that is only 1.48% of the other comparable methods. To evaluate our classification, we use a novel patient-specific training protocol in conjunction with the MIT-BIH database and the recommendation of the AAMI to train the classifiers. The classifiers are random forests that are designed to recognize two major types of arrhythmias. They are supraventricular ectopic beats (SVEB) and ventricular ectopic beats (VEB). The performance of the arrhythmia classification reaches to the F1 scores of 81.05% for SVEB and 97.07% for VEB, which are also comparable to the state-of-the-art methods. The method provides a reliable and accurate approach to analyze ECG signals. Additionally, it also possesses time-efficient, low-complexity, and low-memory-usage advantages. Benefiting from these advantages, the method can be applied to practical ECG applications, especially wearable healthcare devices and implanted medical devices, for wave detection and arrhythmia classification.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Bioinformatics</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>Classifiers</subject><subject>delta-sigma modulator</subject><subject>Detection algorithms</subject><subject>ECG classification</subject><subject>EKG</subject><subject>Electrocardiogram (ECG)</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Heart</subject><subject>Medical equipment</subject><subject>Modulation</subject><subject>Modulators</subject><subject>Quantization (signal)</subject><subject>random forest (RF)</subject><subject>Ventricle</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoKtUfIIIEvHjZmq_NJsdaqlUEwY-Th5BmJxrp7mqyK_Tfm9LqwTlkJpPnnSQvQieUjCkl-vLuan47ZoSRMSe8pJruoENGpSoYI2r3t6ZaHKDjlD5IDpVbWu6jA84pl6VQh-h10uKZ98EFaHs8m97g6dKmFHLH9qFr8dMq9dDglxTaN_wIqRuig-LJfq_3k-jeQw-uHyJg29b4MS9dg6-7CKk_QnveLhMcb_MIvVzPnqfz4v7h5nY6uS8cF7ovuIcFYwo41aoWyhInPXjGhbWOlpWWzPmKVUCE5DV3wjNRqcWirAWVFrTjI3SxmfsZu68hX2yakBwsl7aFbkiGiTLrJa9URs__oR_5Q21-nWEll0pWpKKZohvKxS6lCN58xtDYuDKUmLX5Zm2-WZtvtuZnzdl28rBooP5T_FqdgdMNEADg71gzIaVm_AeNqobS</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kung, Bo-Han</creator><creator>Hu, Po-Yuan</creator><creator>Huang, Chiu-Chang</creator><creator>Lee, Cheng-Che</creator><creator>Yao, Chia-Yu</creator><creator>Kuan, Chieh-Hsiung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9771-041X</orcidid><orcidid>https://orcid.org/0000-0002-2191-7913</orcidid></search><sort><creationdate>20210601</creationdate><title>An Efficient ECG Classification System Using Resource-Saving Architecture and Random Forest</title><author>Kung, Bo-Han ; Hu, Po-Yuan ; Huang, Chiu-Chang ; Lee, Cheng-Che ; Yao, Chia-Yu ; Kuan, Chieh-Hsiung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3feb228e3198d48a0c6fef234aac157962cf727e0463d3c4f2478bb5d416ae9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Bioinformatics</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>Classifiers</topic><topic>delta-sigma modulator</topic><topic>Detection algorithms</topic><topic>ECG classification</topic><topic>EKG</topic><topic>Electrocardiogram (ECG)</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Heart</topic><topic>Medical equipment</topic><topic>Modulation</topic><topic>Modulators</topic><topic>Quantization (signal)</topic><topic>random forest (RF)</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kung, Bo-Han</creatorcontrib><creatorcontrib>Hu, Po-Yuan</creatorcontrib><creatorcontrib>Huang, Chiu-Chang</creatorcontrib><creatorcontrib>Lee, Cheng-Che</creatorcontrib><creatorcontrib>Yao, Chia-Yu</creatorcontrib><creatorcontrib>Kuan, Chieh-Hsiung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kung, Bo-Han</au><au>Hu, Po-Yuan</au><au>Huang, Chiu-Chang</au><au>Lee, Cheng-Che</au><au>Yao, Chia-Yu</au><au>Kuan, Chieh-Hsiung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient ECG Classification System Using Resource-Saving Architecture and Random Forest</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>25</volume><issue>6</issue><spage>1904</spage><epage>1914</epage><pages>1904-1914</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>This paper presents a resource-saving system to extract a few important features of electrocardiogram (ECG) signals. In addition, real-time classifiers are proposed as well to classify different types of arrhythmias via these features. The proposed feature extraction system is based on two delta-sigma modulators adopting 250 Hz sampling rate and three wave detection algorithms to analyze outputs of the modulators. It extracts essential details of each heartbeat, and the details are encoded into 68 bits data that is only 1.48% of the other comparable methods. To evaluate our classification, we use a novel patient-specific training protocol in conjunction with the MIT-BIH database and the recommendation of the AAMI to train the classifiers. The classifiers are random forests that are designed to recognize two major types of arrhythmias. They are supraventricular ectopic beats (SVEB) and ventricular ectopic beats (VEB). The performance of the arrhythmia classification reaches to the F1 scores of 81.05% for SVEB and 97.07% for VEB, which are also comparable to the state-of-the-art methods. The method provides a reliable and accurate approach to analyze ECG signals. Additionally, it also possesses time-efficient, low-complexity, and low-memory-usage advantages. Benefiting from these advantages, the method can be applied to practical ECG applications, especially wearable healthcare devices and implanted medical devices, for wave detection and arrhythmia classification.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33136548</pmid><doi>10.1109/JBHI.2020.3035191</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9771-041X</orcidid><orcidid>https://orcid.org/0000-0002-2191-7913</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2021-06, Vol.25 (6), p.1904-1914 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_9246692 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Arrhythmia Bioinformatics Cardiac arrhythmia Classification Classifiers delta-sigma modulator Detection algorithms ECG classification EKG Electrocardiogram (ECG) Electrocardiography Feature extraction Heart Medical equipment Modulation Modulators Quantization (signal) random forest (RF) Ventricle |
title | An Efficient ECG Classification System Using Resource-Saving Architecture and Random Forest |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20ECG%20Classification%20System%20Using%20Resource-Saving%20Architecture%20and%20Random%20Forest&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Kung,%20Bo-Han&rft.date=2021-06-01&rft.volume=25&rft.issue=6&rft.spage=1904&rft.epage=1914&rft.pages=1904-1914&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2020.3035191&rft_dat=%3Cproquest_RIE%3E2457276378%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536867071&rft_id=info:pmid/33136548&rft_ieee_id=9246692&rfr_iscdi=true |