An Efficient ECG Classification System Using Resource-Saving Architecture and Random Forest

This paper presents a resource-saving system to extract a few important features of electrocardiogram (ECG) signals. In addition, real-time classifiers are proposed as well to classify different types of arrhythmias via these features. The proposed feature extraction system is based on two delta-sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2021-06, Vol.25 (6), p.1904-1914
Hauptverfasser: Kung, Bo-Han, Hu, Po-Yuan, Huang, Chiu-Chang, Lee, Cheng-Che, Yao, Chia-Yu, Kuan, Chieh-Hsiung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1914
container_issue 6
container_start_page 1904
container_title IEEE journal of biomedical and health informatics
container_volume 25
creator Kung, Bo-Han
Hu, Po-Yuan
Huang, Chiu-Chang
Lee, Cheng-Che
Yao, Chia-Yu
Kuan, Chieh-Hsiung
description This paper presents a resource-saving system to extract a few important features of electrocardiogram (ECG) signals. In addition, real-time classifiers are proposed as well to classify different types of arrhythmias via these features. The proposed feature extraction system is based on two delta-sigma modulators adopting 250 Hz sampling rate and three wave detection algorithms to analyze outputs of the modulators. It extracts essential details of each heartbeat, and the details are encoded into 68 bits data that is only 1.48% of the other comparable methods. To evaluate our classification, we use a novel patient-specific training protocol in conjunction with the MIT-BIH database and the recommendation of the AAMI to train the classifiers. The classifiers are random forests that are designed to recognize two major types of arrhythmias. They are supraventricular ectopic beats (SVEB) and ventricular ectopic beats (VEB). The performance of the arrhythmia classification reaches to the F1 scores of 81.05% for SVEB and 97.07% for VEB, which are also comparable to the state-of-the-art methods. The method provides a reliable and accurate approach to analyze ECG signals. Additionally, it also possesses time-efficient, low-complexity, and low-memory-usage advantages. Benefiting from these advantages, the method can be applied to practical ECG applications, especially wearable healthcare devices and implanted medical devices, for wave detection and arrhythmia classification.
doi_str_mv 10.1109/JBHI.2020.3035191
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9246692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9246692</ieee_id><sourcerecordid>2457276378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3feb228e3198d48a0c6fef234aac157962cf727e0463d3c4f2478bb5d416ae9c3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoKtUfIIIEvHjZmq_NJsdaqlUEwY-Th5BmJxrp7mqyK_Tfm9LqwTlkJpPnnSQvQieUjCkl-vLuan47ZoSRMSe8pJruoENGpSoYI2r3t6ZaHKDjlD5IDpVbWu6jA84pl6VQh-h10uKZ98EFaHs8m97g6dKmFHLH9qFr8dMq9dDglxTaN_wIqRuig-LJfq_3k-jeQw-uHyJg29b4MS9dg6-7CKk_QnveLhMcb_MIvVzPnqfz4v7h5nY6uS8cF7ovuIcFYwo41aoWyhInPXjGhbWOlpWWzPmKVUCE5DV3wjNRqcWirAWVFrTjI3SxmfsZu68hX2yakBwsl7aFbkiGiTLrJa9URs__oR_5Q21-nWEll0pWpKKZohvKxS6lCN58xtDYuDKUmLX5Zm2-WZtvtuZnzdl28rBooP5T_FqdgdMNEADg71gzIaVm_AeNqobS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536867071</pqid></control><display><type>article</type><title>An Efficient ECG Classification System Using Resource-Saving Architecture and Random Forest</title><source>IEEE Electronic Library (IEL)</source><creator>Kung, Bo-Han ; Hu, Po-Yuan ; Huang, Chiu-Chang ; Lee, Cheng-Che ; Yao, Chia-Yu ; Kuan, Chieh-Hsiung</creator><creatorcontrib>Kung, Bo-Han ; Hu, Po-Yuan ; Huang, Chiu-Chang ; Lee, Cheng-Che ; Yao, Chia-Yu ; Kuan, Chieh-Hsiung</creatorcontrib><description>This paper presents a resource-saving system to extract a few important features of electrocardiogram (ECG) signals. In addition, real-time classifiers are proposed as well to classify different types of arrhythmias via these features. The proposed feature extraction system is based on two delta-sigma modulators adopting 250 Hz sampling rate and three wave detection algorithms to analyze outputs of the modulators. It extracts essential details of each heartbeat, and the details are encoded into 68 bits data that is only 1.48% of the other comparable methods. To evaluate our classification, we use a novel patient-specific training protocol in conjunction with the MIT-BIH database and the recommendation of the AAMI to train the classifiers. The classifiers are random forests that are designed to recognize two major types of arrhythmias. They are supraventricular ectopic beats (SVEB) and ventricular ectopic beats (VEB). The performance of the arrhythmia classification reaches to the F1 scores of 81.05% for SVEB and 97.07% for VEB, which are also comparable to the state-of-the-art methods. The method provides a reliable and accurate approach to analyze ECG signals. Additionally, it also possesses time-efficient, low-complexity, and low-memory-usage advantages. Benefiting from these advantages, the method can be applied to practical ECG applications, especially wearable healthcare devices and implanted medical devices, for wave detection and arrhythmia classification.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2020.3035191</identifier><identifier>PMID: 33136548</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Arrhythmia ; Bioinformatics ; Cardiac arrhythmia ; Classification ; Classifiers ; delta-sigma modulator ; Detection algorithms ; ECG classification ; EKG ; Electrocardiogram (ECG) ; Electrocardiography ; Feature extraction ; Heart ; Medical equipment ; Modulation ; Modulators ; Quantization (signal) ; random forest (RF) ; Ventricle</subject><ispartof>IEEE journal of biomedical and health informatics, 2021-06, Vol.25 (6), p.1904-1914</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3feb228e3198d48a0c6fef234aac157962cf727e0463d3c4f2478bb5d416ae9c3</citedby><cites>FETCH-LOGICAL-c349t-3feb228e3198d48a0c6fef234aac157962cf727e0463d3c4f2478bb5d416ae9c3</cites><orcidid>0000-0001-9771-041X ; 0000-0002-2191-7913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9246692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9246692$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33136548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kung, Bo-Han</creatorcontrib><creatorcontrib>Hu, Po-Yuan</creatorcontrib><creatorcontrib>Huang, Chiu-Chang</creatorcontrib><creatorcontrib>Lee, Cheng-Che</creatorcontrib><creatorcontrib>Yao, Chia-Yu</creatorcontrib><creatorcontrib>Kuan, Chieh-Hsiung</creatorcontrib><title>An Efficient ECG Classification System Using Resource-Saving Architecture and Random Forest</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>This paper presents a resource-saving system to extract a few important features of electrocardiogram (ECG) signals. In addition, real-time classifiers are proposed as well to classify different types of arrhythmias via these features. The proposed feature extraction system is based on two delta-sigma modulators adopting 250 Hz sampling rate and three wave detection algorithms to analyze outputs of the modulators. It extracts essential details of each heartbeat, and the details are encoded into 68 bits data that is only 1.48% of the other comparable methods. To evaluate our classification, we use a novel patient-specific training protocol in conjunction with the MIT-BIH database and the recommendation of the AAMI to train the classifiers. The classifiers are random forests that are designed to recognize two major types of arrhythmias. They are supraventricular ectopic beats (SVEB) and ventricular ectopic beats (VEB). The performance of the arrhythmia classification reaches to the F1 scores of 81.05% for SVEB and 97.07% for VEB, which are also comparable to the state-of-the-art methods. The method provides a reliable and accurate approach to analyze ECG signals. Additionally, it also possesses time-efficient, low-complexity, and low-memory-usage advantages. Benefiting from these advantages, the method can be applied to practical ECG applications, especially wearable healthcare devices and implanted medical devices, for wave detection and arrhythmia classification.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Bioinformatics</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>Classifiers</subject><subject>delta-sigma modulator</subject><subject>Detection algorithms</subject><subject>ECG classification</subject><subject>EKG</subject><subject>Electrocardiogram (ECG)</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Heart</subject><subject>Medical equipment</subject><subject>Modulation</subject><subject>Modulators</subject><subject>Quantization (signal)</subject><subject>random forest (RF)</subject><subject>Ventricle</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoKtUfIIIEvHjZmq_NJsdaqlUEwY-Th5BmJxrp7mqyK_Tfm9LqwTlkJpPnnSQvQieUjCkl-vLuan47ZoSRMSe8pJruoENGpSoYI2r3t6ZaHKDjlD5IDpVbWu6jA84pl6VQh-h10uKZ98EFaHs8m97g6dKmFHLH9qFr8dMq9dDglxTaN_wIqRuig-LJfq_3k-jeQw-uHyJg29b4MS9dg6-7CKk_QnveLhMcb_MIvVzPnqfz4v7h5nY6uS8cF7ovuIcFYwo41aoWyhInPXjGhbWOlpWWzPmKVUCE5DV3wjNRqcWirAWVFrTjI3SxmfsZu68hX2yakBwsl7aFbkiGiTLrJa9URs__oR_5Q21-nWEll0pWpKKZohvKxS6lCN58xtDYuDKUmLX5Zm2-WZtvtuZnzdl28rBooP5T_FqdgdMNEADg71gzIaVm_AeNqobS</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kung, Bo-Han</creator><creator>Hu, Po-Yuan</creator><creator>Huang, Chiu-Chang</creator><creator>Lee, Cheng-Che</creator><creator>Yao, Chia-Yu</creator><creator>Kuan, Chieh-Hsiung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9771-041X</orcidid><orcidid>https://orcid.org/0000-0002-2191-7913</orcidid></search><sort><creationdate>20210601</creationdate><title>An Efficient ECG Classification System Using Resource-Saving Architecture and Random Forest</title><author>Kung, Bo-Han ; Hu, Po-Yuan ; Huang, Chiu-Chang ; Lee, Cheng-Che ; Yao, Chia-Yu ; Kuan, Chieh-Hsiung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3feb228e3198d48a0c6fef234aac157962cf727e0463d3c4f2478bb5d416ae9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Bioinformatics</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>Classifiers</topic><topic>delta-sigma modulator</topic><topic>Detection algorithms</topic><topic>ECG classification</topic><topic>EKG</topic><topic>Electrocardiogram (ECG)</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Heart</topic><topic>Medical equipment</topic><topic>Modulation</topic><topic>Modulators</topic><topic>Quantization (signal)</topic><topic>random forest (RF)</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kung, Bo-Han</creatorcontrib><creatorcontrib>Hu, Po-Yuan</creatorcontrib><creatorcontrib>Huang, Chiu-Chang</creatorcontrib><creatorcontrib>Lee, Cheng-Che</creatorcontrib><creatorcontrib>Yao, Chia-Yu</creatorcontrib><creatorcontrib>Kuan, Chieh-Hsiung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kung, Bo-Han</au><au>Hu, Po-Yuan</au><au>Huang, Chiu-Chang</au><au>Lee, Cheng-Che</au><au>Yao, Chia-Yu</au><au>Kuan, Chieh-Hsiung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient ECG Classification System Using Resource-Saving Architecture and Random Forest</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>25</volume><issue>6</issue><spage>1904</spage><epage>1914</epage><pages>1904-1914</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>This paper presents a resource-saving system to extract a few important features of electrocardiogram (ECG) signals. In addition, real-time classifiers are proposed as well to classify different types of arrhythmias via these features. The proposed feature extraction system is based on two delta-sigma modulators adopting 250 Hz sampling rate and three wave detection algorithms to analyze outputs of the modulators. It extracts essential details of each heartbeat, and the details are encoded into 68 bits data that is only 1.48% of the other comparable methods. To evaluate our classification, we use a novel patient-specific training protocol in conjunction with the MIT-BIH database and the recommendation of the AAMI to train the classifiers. The classifiers are random forests that are designed to recognize two major types of arrhythmias. They are supraventricular ectopic beats (SVEB) and ventricular ectopic beats (VEB). The performance of the arrhythmia classification reaches to the F1 scores of 81.05% for SVEB and 97.07% for VEB, which are also comparable to the state-of-the-art methods. The method provides a reliable and accurate approach to analyze ECG signals. Additionally, it also possesses time-efficient, low-complexity, and low-memory-usage advantages. Benefiting from these advantages, the method can be applied to practical ECG applications, especially wearable healthcare devices and implanted medical devices, for wave detection and arrhythmia classification.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33136548</pmid><doi>10.1109/JBHI.2020.3035191</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9771-041X</orcidid><orcidid>https://orcid.org/0000-0002-2191-7913</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2021-06, Vol.25 (6), p.1904-1914
issn 2168-2194
2168-2208
language eng
recordid cdi_ieee_primary_9246692
source IEEE Electronic Library (IEL)
subjects Algorithms
Arrhythmia
Bioinformatics
Cardiac arrhythmia
Classification
Classifiers
delta-sigma modulator
Detection algorithms
ECG classification
EKG
Electrocardiogram (ECG)
Electrocardiography
Feature extraction
Heart
Medical equipment
Modulation
Modulators
Quantization (signal)
random forest (RF)
Ventricle
title An Efficient ECG Classification System Using Resource-Saving Architecture and Random Forest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20ECG%20Classification%20System%20Using%20Resource-Saving%20Architecture%20and%20Random%20Forest&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Kung,%20Bo-Han&rft.date=2021-06-01&rft.volume=25&rft.issue=6&rft.spage=1904&rft.epage=1914&rft.pages=1904-1914&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2020.3035191&rft_dat=%3Cproquest_RIE%3E2457276378%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536867071&rft_id=info:pmid/33136548&rft_ieee_id=9246692&rfr_iscdi=true