A Deep Neural Network for Crossing-City POI Recommendations

With the popularity of location-aware devices e.g. smart phones), large amounts of location-based social media data such as check-ins are generated, which stimulates plenty of studies for POI recommendations by applying machine learning techniques. However, most of the existing studies focus on POI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2022-08, Vol.34 (8), p.1-1
Hauptverfasser: Li, Dichao, Gong, Zhiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 8
container_start_page 1
container_title IEEE transactions on knowledge and data engineering
container_volume 34
creator Li, Dichao
Gong, Zhiguo
description With the popularity of location-aware devices e.g. smart phones), large amounts of location-based social media data such as check-ins are generated, which stimulates plenty of studies for POI recommendations by applying machine learning techniques. However, most of the existing studies focus on POI recommendations in the same city or region, and fail to recommend POIs for users when they travel to a new city. In this paper, we propose a novel deep neural network, named as ST-TransRec, for crossing-city POI recommendations which integrates the deep neural network, transfer learning technique, and density-based resampling method into a unified framework. In this model, the deep neural network is used to capture users' preferences for POIs and predict the textual context of POIs to enhance the embeddings of POIs. Besides, we employ the transfer learning technique to bridge the gap between cities which results from the city-dependent features. To address the imbalanced distribution over POIs, we designed a density-based spatial resampling model. In this way, POIs can be well matched across cities. We conduct extensive experiments on two real-world datasets. The experimental results show the advantages of ST-TransRec over the state-of-the-art methods for crossing-city POI recommendations.
doi_str_mv 10.1109/TKDE.2020.3033841
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9240066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9240066</ieee_id><sourcerecordid>2686301134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-4553ac269dbf7bf94007f770fd9248c24bd358bb7212001c5a3954433dca3ece3</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFZ_gHgJeE6d2dkkGzyVtGqxWJF6XjabXUltk7pJkP57E1o8vTm89-bxMXaLMEGE9GH9OptPOHCYEBBJgWdshFEkQ44pnvc3CAwFieSSXTXNBgBkInHEHqfBzNp98GY7r7e9tL-1_w5c7YPM101TVl9hVraH4H21CD6sqXc7WxW6LeuquWYXTm8be3PSMft8mq-zl3C5el5k02VoOKc2FFFE2vA4LXKX5C4VAIlLEnBFyoU0XOQFRTLPE44cAE2kKY2EICqMJmssjdn9sXfv65_ONq3a1J2v-peKxzImQCTRu_DoMsNub53a-3Kn_UEhqIGRGhipgZE6Meozd8dMaa399_ezAOKY_gDz92BV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686301134</pqid></control><display><type>article</type><title>A Deep Neural Network for Crossing-City POI Recommendations</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Dichao ; Gong, Zhiguo</creator><creatorcontrib>Li, Dichao ; Gong, Zhiguo</creatorcontrib><description>With the popularity of location-aware devices e.g. smart phones), large amounts of location-based social media data such as check-ins are generated, which stimulates plenty of studies for POI recommendations by applying machine learning techniques. However, most of the existing studies focus on POI recommendations in the same city or region, and fail to recommend POIs for users when they travel to a new city. In this paper, we propose a novel deep neural network, named as ST-TransRec, for crossing-city POI recommendations which integrates the deep neural network, transfer learning technique, and density-based resampling method into a unified framework. In this model, the deep neural network is used to capture users' preferences for POIs and predict the textual context of POIs to enhance the embeddings of POIs. Besides, we employ the transfer learning technique to bridge the gap between cities which results from the city-dependent features. To address the imbalanced distribution over POIs, we designed a density-based spatial resampling model. In this way, POIs can be well matched across cities. We conduct extensive experiments on two real-world datasets. The experimental results show the advantages of ST-TransRec over the state-of-the-art methods for crossing-city POI recommendations.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2020.3033841</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Cities ; crossing-city ; Data models ; deep learning ; Density ; density-based resampling ; Kernel ; Machine learning ; Neural networks ; POI recommendation ; Recommender systems ; Resampling ; Smart phones ; Smartphones ; Social networking (online) ; transfer learning ; Urban areas</subject><ispartof>IEEE transactions on knowledge and data engineering, 2022-08, Vol.34 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-4553ac269dbf7bf94007f770fd9248c24bd358bb7212001c5a3954433dca3ece3</citedby><cites>FETCH-LOGICAL-c223t-4553ac269dbf7bf94007f770fd9248c24bd358bb7212001c5a3954433dca3ece3</cites><orcidid>0000-0002-4588-890X ; 0000-0002-0292-1917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9240066$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9240066$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Dichao</creatorcontrib><creatorcontrib>Gong, Zhiguo</creatorcontrib><title>A Deep Neural Network for Crossing-City POI Recommendations</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>With the popularity of location-aware devices e.g. smart phones), large amounts of location-based social media data such as check-ins are generated, which stimulates plenty of studies for POI recommendations by applying machine learning techniques. However, most of the existing studies focus on POI recommendations in the same city or region, and fail to recommend POIs for users when they travel to a new city. In this paper, we propose a novel deep neural network, named as ST-TransRec, for crossing-city POI recommendations which integrates the deep neural network, transfer learning technique, and density-based resampling method into a unified framework. In this model, the deep neural network is used to capture users' preferences for POIs and predict the textual context of POIs to enhance the embeddings of POIs. Besides, we employ the transfer learning technique to bridge the gap between cities which results from the city-dependent features. To address the imbalanced distribution over POIs, we designed a density-based spatial resampling model. In this way, POIs can be well matched across cities. We conduct extensive experiments on two real-world datasets. The experimental results show the advantages of ST-TransRec over the state-of-the-art methods for crossing-city POI recommendations.</description><subject>Artificial neural networks</subject><subject>Cities</subject><subject>crossing-city</subject><subject>Data models</subject><subject>deep learning</subject><subject>Density</subject><subject>density-based resampling</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>POI recommendation</subject><subject>Recommender systems</subject><subject>Resampling</subject><subject>Smart phones</subject><subject>Smartphones</subject><subject>Social networking (online)</subject><subject>transfer learning</subject><subject>Urban areas</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhRdRsFZ_gHgJeE6d2dkkGzyVtGqxWJF6XjabXUltk7pJkP57E1o8vTm89-bxMXaLMEGE9GH9OptPOHCYEBBJgWdshFEkQ44pnvc3CAwFieSSXTXNBgBkInHEHqfBzNp98GY7r7e9tL-1_w5c7YPM101TVl9hVraH4H21CD6sqXc7WxW6LeuquWYXTm8be3PSMft8mq-zl3C5el5k02VoOKc2FFFE2vA4LXKX5C4VAIlLEnBFyoU0XOQFRTLPE44cAE2kKY2EICqMJmssjdn9sXfv65_ONq3a1J2v-peKxzImQCTRu_DoMsNub53a-3Kn_UEhqIGRGhipgZE6Meozd8dMaa399_ezAOKY_gDz92BV</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Li, Dichao</creator><creator>Gong, Zhiguo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4588-890X</orcidid><orcidid>https://orcid.org/0000-0002-0292-1917</orcidid></search><sort><creationdate>20220801</creationdate><title>A Deep Neural Network for Crossing-City POI Recommendations</title><author>Li, Dichao ; Gong, Zhiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-4553ac269dbf7bf94007f770fd9248c24bd358bb7212001c5a3954433dca3ece3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Cities</topic><topic>crossing-city</topic><topic>Data models</topic><topic>deep learning</topic><topic>Density</topic><topic>density-based resampling</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>POI recommendation</topic><topic>Recommender systems</topic><topic>Resampling</topic><topic>Smart phones</topic><topic>Smartphones</topic><topic>Social networking (online)</topic><topic>transfer learning</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dichao</creatorcontrib><creatorcontrib>Gong, Zhiguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Dichao</au><au>Gong, Zhiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Neural Network for Crossing-City POI Recommendations</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>34</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>With the popularity of location-aware devices e.g. smart phones), large amounts of location-based social media data such as check-ins are generated, which stimulates plenty of studies for POI recommendations by applying machine learning techniques. However, most of the existing studies focus on POI recommendations in the same city or region, and fail to recommend POIs for users when they travel to a new city. In this paper, we propose a novel deep neural network, named as ST-TransRec, for crossing-city POI recommendations which integrates the deep neural network, transfer learning technique, and density-based resampling method into a unified framework. In this model, the deep neural network is used to capture users' preferences for POIs and predict the textual context of POIs to enhance the embeddings of POIs. Besides, we employ the transfer learning technique to bridge the gap between cities which results from the city-dependent features. To address the imbalanced distribution over POIs, we designed a density-based spatial resampling model. In this way, POIs can be well matched across cities. We conduct extensive experiments on two real-world datasets. The experimental results show the advantages of ST-TransRec over the state-of-the-art methods for crossing-city POI recommendations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2020.3033841</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4588-890X</orcidid><orcidid>https://orcid.org/0000-0002-0292-1917</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2022-08, Vol.34 (8), p.1-1
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_9240066
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Cities
crossing-city
Data models
deep learning
Density
density-based resampling
Kernel
Machine learning
Neural networks
POI recommendation
Recommender systems
Resampling
Smart phones
Smartphones
Social networking (online)
transfer learning
Urban areas
title A Deep Neural Network for Crossing-City POI Recommendations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Neural%20Network%20for%20Crossing-City%20POI%20Recommendations&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Li,%20Dichao&rft.date=2022-08-01&rft.volume=34&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2020.3033841&rft_dat=%3Cproquest_RIE%3E2686301134%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686301134&rft_id=info:pmid/&rft_ieee_id=9240066&rfr_iscdi=true