Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation

In this article, we propose a model-based machine-learning approach for dual-polarization systems by parameterizing the split-step Fourier method for the Manakov-PMD equation. The resulting method combines hardware-friendly time-domain nonlinearity mitigation via the recently proposed learned digita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2021-02, Vol.39 (4), p.949-959
Hauptverfasser: Butler, Rick M., Hager, Christian, Pfister, Henry D., Liga, Gabriele, Alvarado, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 959
container_issue 4
container_start_page 949
container_title Journal of lightwave technology
container_volume 39
creator Butler, Rick M.
Hager, Christian
Pfister, Henry D.
Liga, Gabriele
Alvarado, Alex
description In this article, we propose a model-based machine-learning approach for dual-polarization systems by parameterizing the split-step Fourier method for the Manakov-PMD equation. The resulting method combines hardware-friendly time-domain nonlinearity mitigation via the recently proposed learned digital backpropagation (LDBP) with distributed compensation of polarization-mode dispersion (PMD). We refer to the resulting approach as LDBP-PMD. We train LDBP-PMD on multiple PMD realizations and show that it converges within 1% of its peak dB performance after 428 training iterations on average, yielding a peak effective signal-to-noise ratio of only 0.30 dB below the PMD-free case. Similar to state-of-the-art lumped PMD compensation algorithms in practical systems, our approach does not assume any knowledge about the particular PMD realization along the link, nor any knowledge about the total accumulated PMD. This is a significant improvement compared to prior work on distributed PMD compensation, where knowledge about the accumulated PMD is typically assumed. We also compare different parameterization choices in terms of performance, complexity, and convergence behavior. Lastly, we demonstrate that the learned models can be successfully retrained after an abrupt change of the PMD realization along the fiber.
doi_str_mv 10.1109/JLT.2020.3034047
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9240033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9240033</ieee_id><sourcerecordid>2487438091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-b05b3ae9d3169e9717dd6a99b34a455ccfb085df67fda45fb144f0f6b7223e673</originalsourceid><addsrcrecordid>eNo9UU1vEzEUtBBIDYV7JS4rcd7w_Ln2kaa0tEoEUsvZsnefE5dkvdgbIf49blP19KTRzLw3bwi5oLCkFMyXu_XDkgGDJQcuQHRvyIJKqVvGKH9LFtBx3uqOiTPyvpRHACqE7hbkfpMG3LeXruDQbFy_iyM2a3R5jOO2CSk3dymOc3MVt3F2--bS9b-nnCa3dXNMY-PGofm5uWpW6TDhWJ7BD-RdcPuCH1_mOfl1_e1h9b1d_7i5XX1dt70AM7cepOcOzcCpMmg62g2DcsZ4LpyQsu-DBy2HoLowVCD4enKAoHzHGEfV8XNyf_Itf3E6ejvleHD5n00u2oylhuh3tt-5_QFzsQUteiP9oKTVgTIrXOBWaymsVk4BaCWDg-r6-eRaY_45YpntYzrmsQaxrL5McA2GVhacWH1OpWQMr9sp2KdCbC3EPhViXwqpkk8nSUTEV7phAoBz_h8SfoYI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487438091</pqid></control><display><type>article</type><title>Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation</title><source>IEEE Electronic Library (IEL)</source><creator>Butler, Rick M. ; Hager, Christian ; Pfister, Henry D. ; Liga, Gabriele ; Alvarado, Alex</creator><creatorcontrib>Butler, Rick M. ; Hager, Christian ; Pfister, Henry D. ; Liga, Gabriele ; Alvarado, Alex</creatorcontrib><description>In this article, we propose a model-based machine-learning approach for dual-polarization systems by parameterizing the split-step Fourier method for the Manakov-PMD equation. The resulting method combines hardware-friendly time-domain nonlinearity mitigation via the recently proposed learned digital backpropagation (LDBP) with distributed compensation of polarization-mode dispersion (PMD). We refer to the resulting approach as LDBP-PMD. We train LDBP-PMD on multiple PMD realizations and show that it converges within 1% of its peak dB performance after 428 training iterations on average, yielding a peak effective signal-to-noise ratio of only 0.30 dB below the PMD-free case. Similar to state-of-the-art lumped PMD compensation algorithms in practical systems, our approach does not assume any knowledge about the particular PMD realization along the link, nor any knowledge about the total accumulated PMD. This is a significant improvement compared to prior work on distributed PMD compensation, where knowledge about the accumulated PMD is typically assumed. We also compare different parameterization choices in terms of performance, complexity, and convergence behavior. Lastly, we demonstrate that the learned models can be successfully retrained after an abrupt change of the PMD realization along the fiber.</description><identifier>ISSN: 0733-8724</identifier><identifier>ISSN: 1558-2213</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2020.3034047</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Back propagation ; Backpropagation ; Compensation ; Convergence ; Deep learning ; digital backpropagation ; digital signal processing ; dual-polarization transmission ; Machine learning ; Mathematical model ; Nonlinear optics ; optical fiber communications ; Optical polarization ; Parameterization ; Polarization mode dispersion ; Signal processing algorithms ; Signal to noise ratio ; Time domain analysis</subject><ispartof>Journal of lightwave technology, 2021-02, Vol.39 (4), p.949-959</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-b05b3ae9d3169e9717dd6a99b34a455ccfb085df67fda45fb144f0f6b7223e673</citedby><cites>FETCH-LOGICAL-c409t-b05b3ae9d3169e9717dd6a99b34a455ccfb085df67fda45fb144f0f6b7223e673</cites><orcidid>0000-0002-2172-3051 ; 0000-0002-8805-7815 ; 0000-0001-5521-4397 ; 0000-0002-5155-8018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9240033$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9240033$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://research.chalmers.se/publication/522520$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Butler, Rick M.</creatorcontrib><creatorcontrib>Hager, Christian</creatorcontrib><creatorcontrib>Pfister, Henry D.</creatorcontrib><creatorcontrib>Liga, Gabriele</creatorcontrib><creatorcontrib>Alvarado, Alex</creatorcontrib><title>Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this article, we propose a model-based machine-learning approach for dual-polarization systems by parameterizing the split-step Fourier method for the Manakov-PMD equation. The resulting method combines hardware-friendly time-domain nonlinearity mitigation via the recently proposed learned digital backpropagation (LDBP) with distributed compensation of polarization-mode dispersion (PMD). We refer to the resulting approach as LDBP-PMD. We train LDBP-PMD on multiple PMD realizations and show that it converges within 1% of its peak dB performance after 428 training iterations on average, yielding a peak effective signal-to-noise ratio of only 0.30 dB below the PMD-free case. Similar to state-of-the-art lumped PMD compensation algorithms in practical systems, our approach does not assume any knowledge about the particular PMD realization along the link, nor any knowledge about the total accumulated PMD. This is a significant improvement compared to prior work on distributed PMD compensation, where knowledge about the accumulated PMD is typically assumed. We also compare different parameterization choices in terms of performance, complexity, and convergence behavior. Lastly, we demonstrate that the learned models can be successfully retrained after an abrupt change of the PMD realization along the fiber.</description><subject>Algorithms</subject><subject>Back propagation</subject><subject>Backpropagation</subject><subject>Compensation</subject><subject>Convergence</subject><subject>Deep learning</subject><subject>digital backpropagation</subject><subject>digital signal processing</subject><subject>dual-polarization transmission</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Nonlinear optics</subject><subject>optical fiber communications</subject><subject>Optical polarization</subject><subject>Parameterization</subject><subject>Polarization mode dispersion</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Time domain analysis</subject><issn>0733-8724</issn><issn>1558-2213</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UU1vEzEUtBBIDYV7JS4rcd7w_Ln2kaa0tEoEUsvZsnefE5dkvdgbIf49blP19KTRzLw3bwi5oLCkFMyXu_XDkgGDJQcuQHRvyIJKqVvGKH9LFtBx3uqOiTPyvpRHACqE7hbkfpMG3LeXruDQbFy_iyM2a3R5jOO2CSk3dymOc3MVt3F2--bS9b-nnCa3dXNMY-PGofm5uWpW6TDhWJ7BD-RdcPuCH1_mOfl1_e1h9b1d_7i5XX1dt70AM7cepOcOzcCpMmg62g2DcsZ4LpyQsu-DBy2HoLowVCD4enKAoHzHGEfV8XNyf_Itf3E6ejvleHD5n00u2oylhuh3tt-5_QFzsQUteiP9oKTVgTIrXOBWaymsVk4BaCWDg-r6-eRaY_45YpntYzrmsQaxrL5McA2GVhacWH1OpWQMr9sp2KdCbC3EPhViXwqpkk8nSUTEV7phAoBz_h8SfoYI</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Butler, Rick M.</creator><creator>Hager, Christian</creator><creator>Pfister, Henry D.</creator><creator>Liga, Gabriele</creator><creator>Alvarado, Alex</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0002-2172-3051</orcidid><orcidid>https://orcid.org/0000-0002-8805-7815</orcidid><orcidid>https://orcid.org/0000-0001-5521-4397</orcidid><orcidid>https://orcid.org/0000-0002-5155-8018</orcidid></search><sort><creationdate>20210215</creationdate><title>Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation</title><author>Butler, Rick M. ; Hager, Christian ; Pfister, Henry D. ; Liga, Gabriele ; Alvarado, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-b05b3ae9d3169e9717dd6a99b34a455ccfb085df67fda45fb144f0f6b7223e673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Back propagation</topic><topic>Backpropagation</topic><topic>Compensation</topic><topic>Convergence</topic><topic>Deep learning</topic><topic>digital backpropagation</topic><topic>digital signal processing</topic><topic>dual-polarization transmission</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Nonlinear optics</topic><topic>optical fiber communications</topic><topic>Optical polarization</topic><topic>Parameterization</topic><topic>Polarization mode dispersion</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butler, Rick M.</creatorcontrib><creatorcontrib>Hager, Christian</creatorcontrib><creatorcontrib>Pfister, Henry D.</creatorcontrib><creatorcontrib>Liga, Gabriele</creatorcontrib><creatorcontrib>Alvarado, Alex</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Butler, Rick M.</au><au>Hager, Christian</au><au>Pfister, Henry D.</au><au>Liga, Gabriele</au><au>Alvarado, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-02-15</date><risdate>2021</risdate><volume>39</volume><issue>4</issue><spage>949</spage><epage>959</epage><pages>949-959</pages><issn>0733-8724</issn><issn>1558-2213</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this article, we propose a model-based machine-learning approach for dual-polarization systems by parameterizing the split-step Fourier method for the Manakov-PMD equation. The resulting method combines hardware-friendly time-domain nonlinearity mitigation via the recently proposed learned digital backpropagation (LDBP) with distributed compensation of polarization-mode dispersion (PMD). We refer to the resulting approach as LDBP-PMD. We train LDBP-PMD on multiple PMD realizations and show that it converges within 1% of its peak dB performance after 428 training iterations on average, yielding a peak effective signal-to-noise ratio of only 0.30 dB below the PMD-free case. Similar to state-of-the-art lumped PMD compensation algorithms in practical systems, our approach does not assume any knowledge about the particular PMD realization along the link, nor any knowledge about the total accumulated PMD. This is a significant improvement compared to prior work on distributed PMD compensation, where knowledge about the accumulated PMD is typically assumed. We also compare different parameterization choices in terms of performance, complexity, and convergence behavior. Lastly, we demonstrate that the learned models can be successfully retrained after an abrupt change of the PMD realization along the fiber.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2020.3034047</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2172-3051</orcidid><orcidid>https://orcid.org/0000-0002-8805-7815</orcidid><orcidid>https://orcid.org/0000-0001-5521-4397</orcidid><orcidid>https://orcid.org/0000-0002-5155-8018</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2021-02, Vol.39 (4), p.949-959
issn 0733-8724
1558-2213
1558-2213
language eng
recordid cdi_ieee_primary_9240033
source IEEE Electronic Library (IEL)
subjects Algorithms
Back propagation
Backpropagation
Compensation
Convergence
Deep learning
digital backpropagation
digital signal processing
dual-polarization transmission
Machine learning
Mathematical model
Nonlinear optics
optical fiber communications
Optical polarization
Parameterization
Polarization mode dispersion
Signal processing algorithms
Signal to noise ratio
Time domain analysis
title Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Machine%20Learning%20for%20Joint%20Digital%20Backpropagation%20and%20PMD%20Compensation&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Butler,%20Rick%20M.&rft.date=2021-02-15&rft.volume=39&rft.issue=4&rft.spage=949&rft.epage=959&rft.pages=949-959&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2020.3034047&rft_dat=%3Cproquest_RIE%3E2487438091%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487438091&rft_id=info:pmid/&rft_ieee_id=9240033&rfr_iscdi=true