Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation
In this article, we propose a model-based machine-learning approach for dual-polarization systems by parameterizing the split-step Fourier method for the Manakov-PMD equation. The resulting method combines hardware-friendly time-domain nonlinearity mitigation via the recently proposed learned digita...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2021-02, Vol.39 (4), p.949-959 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 959 |
---|---|
container_issue | 4 |
container_start_page | 949 |
container_title | Journal of lightwave technology |
container_volume | 39 |
creator | Butler, Rick M. Hager, Christian Pfister, Henry D. Liga, Gabriele Alvarado, Alex |
description | In this article, we propose a model-based machine-learning approach for dual-polarization systems by parameterizing the split-step Fourier method for the Manakov-PMD equation. The resulting method combines hardware-friendly time-domain nonlinearity mitigation via the recently proposed learned digital backpropagation (LDBP) with distributed compensation of polarization-mode dispersion (PMD). We refer to the resulting approach as LDBP-PMD. We train LDBP-PMD on multiple PMD realizations and show that it converges within 1% of its peak dB performance after 428 training iterations on average, yielding a peak effective signal-to-noise ratio of only 0.30 dB below the PMD-free case. Similar to state-of-the-art lumped PMD compensation algorithms in practical systems, our approach does not assume any knowledge about the particular PMD realization along the link, nor any knowledge about the total accumulated PMD. This is a significant improvement compared to prior work on distributed PMD compensation, where knowledge about the accumulated PMD is typically assumed. We also compare different parameterization choices in terms of performance, complexity, and convergence behavior. Lastly, we demonstrate that the learned models can be successfully retrained after an abrupt change of the PMD realization along the fiber. |
doi_str_mv | 10.1109/JLT.2020.3034047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9240033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9240033</ieee_id><sourcerecordid>2487438091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-b05b3ae9d3169e9717dd6a99b34a455ccfb085df67fda45fb144f0f6b7223e673</originalsourceid><addsrcrecordid>eNo9UU1vEzEUtBBIDYV7JS4rcd7w_Ln2kaa0tEoEUsvZsnefE5dkvdgbIf49blP19KTRzLw3bwi5oLCkFMyXu_XDkgGDJQcuQHRvyIJKqVvGKH9LFtBx3uqOiTPyvpRHACqE7hbkfpMG3LeXruDQbFy_iyM2a3R5jOO2CSk3dymOc3MVt3F2--bS9b-nnCa3dXNMY-PGofm5uWpW6TDhWJ7BD-RdcPuCH1_mOfl1_e1h9b1d_7i5XX1dt70AM7cepOcOzcCpMmg62g2DcsZ4LpyQsu-DBy2HoLowVCD4enKAoHzHGEfV8XNyf_Itf3E6ejvleHD5n00u2oylhuh3tt-5_QFzsQUteiP9oKTVgTIrXOBWaymsVk4BaCWDg-r6-eRaY_45YpntYzrmsQaxrL5McA2GVhacWH1OpWQMr9sp2KdCbC3EPhViXwqpkk8nSUTEV7phAoBz_h8SfoYI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487438091</pqid></control><display><type>article</type><title>Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation</title><source>IEEE Electronic Library (IEL)</source><creator>Butler, Rick M. ; Hager, Christian ; Pfister, Henry D. ; Liga, Gabriele ; Alvarado, Alex</creator><creatorcontrib>Butler, Rick M. ; Hager, Christian ; Pfister, Henry D. ; Liga, Gabriele ; Alvarado, Alex</creatorcontrib><description>In this article, we propose a model-based machine-learning approach for dual-polarization systems by parameterizing the split-step Fourier method for the Manakov-PMD equation. The resulting method combines hardware-friendly time-domain nonlinearity mitigation via the recently proposed learned digital backpropagation (LDBP) with distributed compensation of polarization-mode dispersion (PMD). We refer to the resulting approach as LDBP-PMD. We train LDBP-PMD on multiple PMD realizations and show that it converges within 1% of its peak dB performance after 428 training iterations on average, yielding a peak effective signal-to-noise ratio of only 0.30 dB below the PMD-free case. Similar to state-of-the-art lumped PMD compensation algorithms in practical systems, our approach does not assume any knowledge about the particular PMD realization along the link, nor any knowledge about the total accumulated PMD. This is a significant improvement compared to prior work on distributed PMD compensation, where knowledge about the accumulated PMD is typically assumed. We also compare different parameterization choices in terms of performance, complexity, and convergence behavior. Lastly, we demonstrate that the learned models can be successfully retrained after an abrupt change of the PMD realization along the fiber.</description><identifier>ISSN: 0733-8724</identifier><identifier>ISSN: 1558-2213</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2020.3034047</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Back propagation ; Backpropagation ; Compensation ; Convergence ; Deep learning ; digital backpropagation ; digital signal processing ; dual-polarization transmission ; Machine learning ; Mathematical model ; Nonlinear optics ; optical fiber communications ; Optical polarization ; Parameterization ; Polarization mode dispersion ; Signal processing algorithms ; Signal to noise ratio ; Time domain analysis</subject><ispartof>Journal of lightwave technology, 2021-02, Vol.39 (4), p.949-959</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-b05b3ae9d3169e9717dd6a99b34a455ccfb085df67fda45fb144f0f6b7223e673</citedby><cites>FETCH-LOGICAL-c409t-b05b3ae9d3169e9717dd6a99b34a455ccfb085df67fda45fb144f0f6b7223e673</cites><orcidid>0000-0002-2172-3051 ; 0000-0002-8805-7815 ; 0000-0001-5521-4397 ; 0000-0002-5155-8018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9240033$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9240033$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://research.chalmers.se/publication/522520$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Butler, Rick M.</creatorcontrib><creatorcontrib>Hager, Christian</creatorcontrib><creatorcontrib>Pfister, Henry D.</creatorcontrib><creatorcontrib>Liga, Gabriele</creatorcontrib><creatorcontrib>Alvarado, Alex</creatorcontrib><title>Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this article, we propose a model-based machine-learning approach for dual-polarization systems by parameterizing the split-step Fourier method for the Manakov-PMD equation. The resulting method combines hardware-friendly time-domain nonlinearity mitigation via the recently proposed learned digital backpropagation (LDBP) with distributed compensation of polarization-mode dispersion (PMD). We refer to the resulting approach as LDBP-PMD. We train LDBP-PMD on multiple PMD realizations and show that it converges within 1% of its peak dB performance after 428 training iterations on average, yielding a peak effective signal-to-noise ratio of only 0.30 dB below the PMD-free case. Similar to state-of-the-art lumped PMD compensation algorithms in practical systems, our approach does not assume any knowledge about the particular PMD realization along the link, nor any knowledge about the total accumulated PMD. This is a significant improvement compared to prior work on distributed PMD compensation, where knowledge about the accumulated PMD is typically assumed. We also compare different parameterization choices in terms of performance, complexity, and convergence behavior. Lastly, we demonstrate that the learned models can be successfully retrained after an abrupt change of the PMD realization along the fiber.</description><subject>Algorithms</subject><subject>Back propagation</subject><subject>Backpropagation</subject><subject>Compensation</subject><subject>Convergence</subject><subject>Deep learning</subject><subject>digital backpropagation</subject><subject>digital signal processing</subject><subject>dual-polarization transmission</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Nonlinear optics</subject><subject>optical fiber communications</subject><subject>Optical polarization</subject><subject>Parameterization</subject><subject>Polarization mode dispersion</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Time domain analysis</subject><issn>0733-8724</issn><issn>1558-2213</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UU1vEzEUtBBIDYV7JS4rcd7w_Ln2kaa0tEoEUsvZsnefE5dkvdgbIf49blP19KTRzLw3bwi5oLCkFMyXu_XDkgGDJQcuQHRvyIJKqVvGKH9LFtBx3uqOiTPyvpRHACqE7hbkfpMG3LeXruDQbFy_iyM2a3R5jOO2CSk3dymOc3MVt3F2--bS9b-nnCa3dXNMY-PGofm5uWpW6TDhWJ7BD-RdcPuCH1_mOfl1_e1h9b1d_7i5XX1dt70AM7cepOcOzcCpMmg62g2DcsZ4LpyQsu-DBy2HoLowVCD4enKAoHzHGEfV8XNyf_Itf3E6ejvleHD5n00u2oylhuh3tt-5_QFzsQUteiP9oKTVgTIrXOBWaymsVk4BaCWDg-r6-eRaY_45YpntYzrmsQaxrL5McA2GVhacWH1OpWQMr9sp2KdCbC3EPhViXwqpkk8nSUTEV7phAoBz_h8SfoYI</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Butler, Rick M.</creator><creator>Hager, Christian</creator><creator>Pfister, Henry D.</creator><creator>Liga, Gabriele</creator><creator>Alvarado, Alex</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0002-2172-3051</orcidid><orcidid>https://orcid.org/0000-0002-8805-7815</orcidid><orcidid>https://orcid.org/0000-0001-5521-4397</orcidid><orcidid>https://orcid.org/0000-0002-5155-8018</orcidid></search><sort><creationdate>20210215</creationdate><title>Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation</title><author>Butler, Rick M. ; Hager, Christian ; Pfister, Henry D. ; Liga, Gabriele ; Alvarado, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-b05b3ae9d3169e9717dd6a99b34a455ccfb085df67fda45fb144f0f6b7223e673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Back propagation</topic><topic>Backpropagation</topic><topic>Compensation</topic><topic>Convergence</topic><topic>Deep learning</topic><topic>digital backpropagation</topic><topic>digital signal processing</topic><topic>dual-polarization transmission</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Nonlinear optics</topic><topic>optical fiber communications</topic><topic>Optical polarization</topic><topic>Parameterization</topic><topic>Polarization mode dispersion</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butler, Rick M.</creatorcontrib><creatorcontrib>Hager, Christian</creatorcontrib><creatorcontrib>Pfister, Henry D.</creatorcontrib><creatorcontrib>Liga, Gabriele</creatorcontrib><creatorcontrib>Alvarado, Alex</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Butler, Rick M.</au><au>Hager, Christian</au><au>Pfister, Henry D.</au><au>Liga, Gabriele</au><au>Alvarado, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-02-15</date><risdate>2021</risdate><volume>39</volume><issue>4</issue><spage>949</spage><epage>959</epage><pages>949-959</pages><issn>0733-8724</issn><issn>1558-2213</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this article, we propose a model-based machine-learning approach for dual-polarization systems by parameterizing the split-step Fourier method for the Manakov-PMD equation. The resulting method combines hardware-friendly time-domain nonlinearity mitigation via the recently proposed learned digital backpropagation (LDBP) with distributed compensation of polarization-mode dispersion (PMD). We refer to the resulting approach as LDBP-PMD. We train LDBP-PMD on multiple PMD realizations and show that it converges within 1% of its peak dB performance after 428 training iterations on average, yielding a peak effective signal-to-noise ratio of only 0.30 dB below the PMD-free case. Similar to state-of-the-art lumped PMD compensation algorithms in practical systems, our approach does not assume any knowledge about the particular PMD realization along the link, nor any knowledge about the total accumulated PMD. This is a significant improvement compared to prior work on distributed PMD compensation, where knowledge about the accumulated PMD is typically assumed. We also compare different parameterization choices in terms of performance, complexity, and convergence behavior. Lastly, we demonstrate that the learned models can be successfully retrained after an abrupt change of the PMD realization along the fiber.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2020.3034047</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2172-3051</orcidid><orcidid>https://orcid.org/0000-0002-8805-7815</orcidid><orcidid>https://orcid.org/0000-0001-5521-4397</orcidid><orcidid>https://orcid.org/0000-0002-5155-8018</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2021-02, Vol.39 (4), p.949-959 |
issn | 0733-8724 1558-2213 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_9240033 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Back propagation Backpropagation Compensation Convergence Deep learning digital backpropagation digital signal processing dual-polarization transmission Machine learning Mathematical model Nonlinear optics optical fiber communications Optical polarization Parameterization Polarization mode dispersion Signal processing algorithms Signal to noise ratio Time domain analysis |
title | Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Machine%20Learning%20for%20Joint%20Digital%20Backpropagation%20and%20PMD%20Compensation&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Butler,%20Rick%20M.&rft.date=2021-02-15&rft.volume=39&rft.issue=4&rft.spage=949&rft.epage=959&rft.pages=949-959&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2020.3034047&rft_dat=%3Cproquest_RIE%3E2487438091%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487438091&rft_id=info:pmid/&rft_ieee_id=9240033&rfr_iscdi=true |