Li-Ion Battery State of Health Estimation and Remaining Useful Life Prediction Through a Model-Data-Fusion Method
The prognostics and health management of Li-ion batteries in electric vehicles are challenging due to the time-varying and nonlinear battery degradation. This article proposes a model-data-fusion method for battery state-of-health estimation and remaining useful life prediction. First, combined with...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2021-06, Vol.36 (6), p.6228-6240 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6240 |
---|---|
container_issue | 6 |
container_start_page | 6228 |
container_title | IEEE transactions on power electronics |
container_volume | 36 |
creator | Lyu, Zhiqiang Gao, Renjing Chen, Lin |
description | The prognostics and health management of Li-ion batteries in electric vehicles are challenging due to the time-varying and nonlinear battery degradation. This article proposes a model-data-fusion method for battery state-of-health estimation and remaining useful life prediction. First, combined with metabolic gray model and multiple-output Gaussian process regression, a dynamic and data-driven battery degradation model is established to simulate battery complicated degradation behaviors, which takes the capacity degradation as the state variable and takes the internal resistance and polarization resistance from battery Thevenin model as the input variables. Second, to suppress the measurement noises of online battery information, a particle filter is utilized to track the battery capacity degradation for state-of-health estimation and extrapolate the degradation trajectory for remaining useful life prediction. Furthermore, battery ageing experiments are conducted to verify the proposed model-data-fusion method. The verification results show that the proposed method can provide an accurate and robustness state of health estimation and remaining useful life prediction at different temperatures. |
doi_str_mv | 10.1109/TPEL.2020.3033297 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9238444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9238444</ieee_id><sourcerecordid>2487438507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-889f582a83eb31f72122a0c169086a57364546baaa74d98f4cc0d7031ecc84273</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9AcbLJp6Lsx9td49-gJCUSBTOzdJOoaS0sLs98O9thXiawzzvO5mHkEcGI8ZAvywX42TEgcNIgBBcx1dkwLRkATCIr8kAlAoDpbW4JXfO7QCYDIENyDEpg1lT0zfjPdoT_fHGI20KOkVT-S0dO1_ujS87xNQ5_ca9Keuy3tCVw6KtaFIWSBcW8zL7g5Zb27SbLTV03uRYBR_Gm2DSun43R79t8ntyU5jK4cNlDslqMl6-T4Pk63P2_poEmZDMB0rpIlTcKIFrwYqYM84NZCzSoCITxiKSoYzWxphY5loVMssgj0EwzDIleSyG5Pnce7DNsUXn013T2ro7mXKpYilUCD3FzlRmG-csFunBdg_bU8og7c2mvdm0N5tezHaZp3OmRMR_XnOhpJTiFwtac4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487438507</pqid></control><display><type>article</type><title>Li-Ion Battery State of Health Estimation and Remaining Useful Life Prediction Through a Model-Data-Fusion Method</title><source>IEEE Electronic Library (IEL)</source><creator>Lyu, Zhiqiang ; Gao, Renjing ; Chen, Lin</creator><creatorcontrib>Lyu, Zhiqiang ; Gao, Renjing ; Chen, Lin</creatorcontrib><description>The prognostics and health management of Li-ion batteries in electric vehicles are challenging due to the time-varying and nonlinear battery degradation. This article proposes a model-data-fusion method for battery state-of-health estimation and remaining useful life prediction. First, combined with metabolic gray model and multiple-output Gaussian process regression, a dynamic and data-driven battery degradation model is established to simulate battery complicated degradation behaviors, which takes the capacity degradation as the state variable and takes the internal resistance and polarization resistance from battery Thevenin model as the input variables. Second, to suppress the measurement noises of online battery information, a particle filter is utilized to track the battery capacity degradation for state-of-health estimation and extrapolate the degradation trajectory for remaining useful life prediction. Furthermore, battery ageing experiments are conducted to verify the proposed model-data-fusion method. The verification results show that the proposed method can provide an accurate and robustness state of health estimation and remaining useful life prediction at different temperatures.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2020.3033297</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Aging ; Batteries ; Data integration ; Degradation ; Electric vehicles ; Estimation ; Gaussian process ; Hidden Markov models ; Li-ion battery ; Life prediction ; Lithium-ion batteries ; metabolic gray model ; model-data-fusion ; multiple-output Gaussian process regression ; particle filter (PF) ; Predictive models ; Rechargeable batteries ; remaining useful life ; state of health ; Useful life</subject><ispartof>IEEE transactions on power electronics, 2021-06, Vol.36 (6), p.6228-6240</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-889f582a83eb31f72122a0c169086a57364546baaa74d98f4cc0d7031ecc84273</citedby><cites>FETCH-LOGICAL-c341t-889f582a83eb31f72122a0c169086a57364546baaa74d98f4cc0d7031ecc84273</cites><orcidid>0000-0002-2976-347X ; 0000-0002-2211-4047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9238444$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9238444$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lyu, Zhiqiang</creatorcontrib><creatorcontrib>Gao, Renjing</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><title>Li-Ion Battery State of Health Estimation and Remaining Useful Life Prediction Through a Model-Data-Fusion Method</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>The prognostics and health management of Li-ion batteries in electric vehicles are challenging due to the time-varying and nonlinear battery degradation. This article proposes a model-data-fusion method for battery state-of-health estimation and remaining useful life prediction. First, combined with metabolic gray model and multiple-output Gaussian process regression, a dynamic and data-driven battery degradation model is established to simulate battery complicated degradation behaviors, which takes the capacity degradation as the state variable and takes the internal resistance and polarization resistance from battery Thevenin model as the input variables. Second, to suppress the measurement noises of online battery information, a particle filter is utilized to track the battery capacity degradation for state-of-health estimation and extrapolate the degradation trajectory for remaining useful life prediction. Furthermore, battery ageing experiments are conducted to verify the proposed model-data-fusion method. The verification results show that the proposed method can provide an accurate and robustness state of health estimation and remaining useful life prediction at different temperatures.</description><subject>Adaptation models</subject><subject>Aging</subject><subject>Batteries</subject><subject>Data integration</subject><subject>Degradation</subject><subject>Electric vehicles</subject><subject>Estimation</subject><subject>Gaussian process</subject><subject>Hidden Markov models</subject><subject>Li-ion battery</subject><subject>Life prediction</subject><subject>Lithium-ion batteries</subject><subject>metabolic gray model</subject><subject>model-data-fusion</subject><subject>multiple-output Gaussian process regression</subject><subject>particle filter (PF)</subject><subject>Predictive models</subject><subject>Rechargeable batteries</subject><subject>remaining useful life</subject><subject>state of health</subject><subject>Useful life</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExH9AcbLJp6Lsx9td49-gJCUSBTOzdJOoaS0sLs98O9thXiawzzvO5mHkEcGI8ZAvywX42TEgcNIgBBcx1dkwLRkATCIr8kAlAoDpbW4JXfO7QCYDIENyDEpg1lT0zfjPdoT_fHGI20KOkVT-S0dO1_ujS87xNQ5_ca9Keuy3tCVw6KtaFIWSBcW8zL7g5Zb27SbLTV03uRYBR_Gm2DSun43R79t8ntyU5jK4cNlDslqMl6-T4Pk63P2_poEmZDMB0rpIlTcKIFrwYqYM84NZCzSoCITxiKSoYzWxphY5loVMssgj0EwzDIleSyG5Pnce7DNsUXn013T2ro7mXKpYilUCD3FzlRmG-csFunBdg_bU8og7c2mvdm0N5tezHaZp3OmRMR_XnOhpJTiFwtac4w</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Lyu, Zhiqiang</creator><creator>Gao, Renjing</creator><creator>Chen, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2976-347X</orcidid><orcidid>https://orcid.org/0000-0002-2211-4047</orcidid></search><sort><creationdate>20210601</creationdate><title>Li-Ion Battery State of Health Estimation and Remaining Useful Life Prediction Through a Model-Data-Fusion Method</title><author>Lyu, Zhiqiang ; Gao, Renjing ; Chen, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-889f582a83eb31f72122a0c169086a57364546baaa74d98f4cc0d7031ecc84273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Aging</topic><topic>Batteries</topic><topic>Data integration</topic><topic>Degradation</topic><topic>Electric vehicles</topic><topic>Estimation</topic><topic>Gaussian process</topic><topic>Hidden Markov models</topic><topic>Li-ion battery</topic><topic>Life prediction</topic><topic>Lithium-ion batteries</topic><topic>metabolic gray model</topic><topic>model-data-fusion</topic><topic>multiple-output Gaussian process regression</topic><topic>particle filter (PF)</topic><topic>Predictive models</topic><topic>Rechargeable batteries</topic><topic>remaining useful life</topic><topic>state of health</topic><topic>Useful life</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Zhiqiang</creatorcontrib><creatorcontrib>Gao, Renjing</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lyu, Zhiqiang</au><au>Gao, Renjing</au><au>Chen, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li-Ion Battery State of Health Estimation and Remaining Useful Life Prediction Through a Model-Data-Fusion Method</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>36</volume><issue>6</issue><spage>6228</spage><epage>6240</epage><pages>6228-6240</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>The prognostics and health management of Li-ion batteries in electric vehicles are challenging due to the time-varying and nonlinear battery degradation. This article proposes a model-data-fusion method for battery state-of-health estimation and remaining useful life prediction. First, combined with metabolic gray model and multiple-output Gaussian process regression, a dynamic and data-driven battery degradation model is established to simulate battery complicated degradation behaviors, which takes the capacity degradation as the state variable and takes the internal resistance and polarization resistance from battery Thevenin model as the input variables. Second, to suppress the measurement noises of online battery information, a particle filter is utilized to track the battery capacity degradation for state-of-health estimation and extrapolate the degradation trajectory for remaining useful life prediction. Furthermore, battery ageing experiments are conducted to verify the proposed model-data-fusion method. The verification results show that the proposed method can provide an accurate and robustness state of health estimation and remaining useful life prediction at different temperatures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2020.3033297</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2976-347X</orcidid><orcidid>https://orcid.org/0000-0002-2211-4047</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2021-06, Vol.36 (6), p.6228-6240 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_9238444 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Aging Batteries Data integration Degradation Electric vehicles Estimation Gaussian process Hidden Markov models Li-ion battery Life prediction Lithium-ion batteries metabolic gray model model-data-fusion multiple-output Gaussian process regression particle filter (PF) Predictive models Rechargeable batteries remaining useful life state of health Useful life |
title | Li-Ion Battery State of Health Estimation and Remaining Useful Life Prediction Through a Model-Data-Fusion Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li-Ion%20Battery%20State%20of%20Health%20Estimation%20and%20Remaining%20Useful%20Life%20Prediction%20Through%20a%20Model-Data-Fusion%20Method&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Lyu,%20Zhiqiang&rft.date=2021-06-01&rft.volume=36&rft.issue=6&rft.spage=6228&rft.epage=6240&rft.pages=6228-6240&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2020.3033297&rft_dat=%3Cproquest_RIE%3E2487438507%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487438507&rft_id=info:pmid/&rft_ieee_id=9238444&rfr_iscdi=true |