Li-Ion Battery State of Health Estimation and Remaining Useful Life Prediction Through a Model-Data-Fusion Method

The prognostics and health management of Li-ion batteries in electric vehicles are challenging due to the time-varying and nonlinear battery degradation. This article proposes a model-data-fusion method for battery state-of-health estimation and remaining useful life prediction. First, combined with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2021-06, Vol.36 (6), p.6228-6240
Hauptverfasser: Lyu, Zhiqiang, Gao, Renjing, Chen, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6240
container_issue 6
container_start_page 6228
container_title IEEE transactions on power electronics
container_volume 36
creator Lyu, Zhiqiang
Gao, Renjing
Chen, Lin
description The prognostics and health management of Li-ion batteries in electric vehicles are challenging due to the time-varying and nonlinear battery degradation. This article proposes a model-data-fusion method for battery state-of-health estimation and remaining useful life prediction. First, combined with metabolic gray model and multiple-output Gaussian process regression, a dynamic and data-driven battery degradation model is established to simulate battery complicated degradation behaviors, which takes the capacity degradation as the state variable and takes the internal resistance and polarization resistance from battery Thevenin model as the input variables. Second, to suppress the measurement noises of online battery information, a particle filter is utilized to track the battery capacity degradation for state-of-health estimation and extrapolate the degradation trajectory for remaining useful life prediction. Furthermore, battery ageing experiments are conducted to verify the proposed model-data-fusion method. The verification results show that the proposed method can provide an accurate and robustness state of health estimation and remaining useful life prediction at different temperatures.
doi_str_mv 10.1109/TPEL.2020.3033297
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9238444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9238444</ieee_id><sourcerecordid>2487438507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-889f582a83eb31f72122a0c169086a57364546baaa74d98f4cc0d7031ecc84273</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9AcbLJp6Lsx9td49-gJCUSBTOzdJOoaS0sLs98O9thXiawzzvO5mHkEcGI8ZAvywX42TEgcNIgBBcx1dkwLRkATCIr8kAlAoDpbW4JXfO7QCYDIENyDEpg1lT0zfjPdoT_fHGI20KOkVT-S0dO1_ujS87xNQ5_ca9Keuy3tCVw6KtaFIWSBcW8zL7g5Zb27SbLTV03uRYBR_Gm2DSun43R79t8ntyU5jK4cNlDslqMl6-T4Pk63P2_poEmZDMB0rpIlTcKIFrwYqYM84NZCzSoCITxiKSoYzWxphY5loVMssgj0EwzDIleSyG5Pnce7DNsUXn013T2ro7mXKpYilUCD3FzlRmG-csFunBdg_bU8og7c2mvdm0N5tezHaZp3OmRMR_XnOhpJTiFwtac4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487438507</pqid></control><display><type>article</type><title>Li-Ion Battery State of Health Estimation and Remaining Useful Life Prediction Through a Model-Data-Fusion Method</title><source>IEEE Electronic Library (IEL)</source><creator>Lyu, Zhiqiang ; Gao, Renjing ; Chen, Lin</creator><creatorcontrib>Lyu, Zhiqiang ; Gao, Renjing ; Chen, Lin</creatorcontrib><description>The prognostics and health management of Li-ion batteries in electric vehicles are challenging due to the time-varying and nonlinear battery degradation. This article proposes a model-data-fusion method for battery state-of-health estimation and remaining useful life prediction. First, combined with metabolic gray model and multiple-output Gaussian process regression, a dynamic and data-driven battery degradation model is established to simulate battery complicated degradation behaviors, which takes the capacity degradation as the state variable and takes the internal resistance and polarization resistance from battery Thevenin model as the input variables. Second, to suppress the measurement noises of online battery information, a particle filter is utilized to track the battery capacity degradation for state-of-health estimation and extrapolate the degradation trajectory for remaining useful life prediction. Furthermore, battery ageing experiments are conducted to verify the proposed model-data-fusion method. The verification results show that the proposed method can provide an accurate and robustness state of health estimation and remaining useful life prediction at different temperatures.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2020.3033297</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Aging ; Batteries ; Data integration ; Degradation ; Electric vehicles ; Estimation ; Gaussian process ; Hidden Markov models ; Li-ion battery ; Life prediction ; Lithium-ion batteries ; metabolic gray model ; model-data-fusion ; multiple-output Gaussian process regression ; particle filter (PF) ; Predictive models ; Rechargeable batteries ; remaining useful life ; state of health ; Useful life</subject><ispartof>IEEE transactions on power electronics, 2021-06, Vol.36 (6), p.6228-6240</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-889f582a83eb31f72122a0c169086a57364546baaa74d98f4cc0d7031ecc84273</citedby><cites>FETCH-LOGICAL-c341t-889f582a83eb31f72122a0c169086a57364546baaa74d98f4cc0d7031ecc84273</cites><orcidid>0000-0002-2976-347X ; 0000-0002-2211-4047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9238444$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9238444$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lyu, Zhiqiang</creatorcontrib><creatorcontrib>Gao, Renjing</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><title>Li-Ion Battery State of Health Estimation and Remaining Useful Life Prediction Through a Model-Data-Fusion Method</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>The prognostics and health management of Li-ion batteries in electric vehicles are challenging due to the time-varying and nonlinear battery degradation. This article proposes a model-data-fusion method for battery state-of-health estimation and remaining useful life prediction. First, combined with metabolic gray model and multiple-output Gaussian process regression, a dynamic and data-driven battery degradation model is established to simulate battery complicated degradation behaviors, which takes the capacity degradation as the state variable and takes the internal resistance and polarization resistance from battery Thevenin model as the input variables. Second, to suppress the measurement noises of online battery information, a particle filter is utilized to track the battery capacity degradation for state-of-health estimation and extrapolate the degradation trajectory for remaining useful life prediction. Furthermore, battery ageing experiments are conducted to verify the proposed model-data-fusion method. The verification results show that the proposed method can provide an accurate and robustness state of health estimation and remaining useful life prediction at different temperatures.</description><subject>Adaptation models</subject><subject>Aging</subject><subject>Batteries</subject><subject>Data integration</subject><subject>Degradation</subject><subject>Electric vehicles</subject><subject>Estimation</subject><subject>Gaussian process</subject><subject>Hidden Markov models</subject><subject>Li-ion battery</subject><subject>Life prediction</subject><subject>Lithium-ion batteries</subject><subject>metabolic gray model</subject><subject>model-data-fusion</subject><subject>multiple-output Gaussian process regression</subject><subject>particle filter (PF)</subject><subject>Predictive models</subject><subject>Rechargeable batteries</subject><subject>remaining useful life</subject><subject>state of health</subject><subject>Useful life</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExH9AcbLJp6Lsx9td49-gJCUSBTOzdJOoaS0sLs98O9thXiawzzvO5mHkEcGI8ZAvywX42TEgcNIgBBcx1dkwLRkATCIr8kAlAoDpbW4JXfO7QCYDIENyDEpg1lT0zfjPdoT_fHGI20KOkVT-S0dO1_ujS87xNQ5_ca9Keuy3tCVw6KtaFIWSBcW8zL7g5Zb27SbLTV03uRYBR_Gm2DSun43R79t8ntyU5jK4cNlDslqMl6-T4Pk63P2_poEmZDMB0rpIlTcKIFrwYqYM84NZCzSoCITxiKSoYzWxphY5loVMssgj0EwzDIleSyG5Pnce7DNsUXn013T2ro7mXKpYilUCD3FzlRmG-csFunBdg_bU8og7c2mvdm0N5tezHaZp3OmRMR_XnOhpJTiFwtac4w</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Lyu, Zhiqiang</creator><creator>Gao, Renjing</creator><creator>Chen, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2976-347X</orcidid><orcidid>https://orcid.org/0000-0002-2211-4047</orcidid></search><sort><creationdate>20210601</creationdate><title>Li-Ion Battery State of Health Estimation and Remaining Useful Life Prediction Through a Model-Data-Fusion Method</title><author>Lyu, Zhiqiang ; Gao, Renjing ; Chen, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-889f582a83eb31f72122a0c169086a57364546baaa74d98f4cc0d7031ecc84273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Aging</topic><topic>Batteries</topic><topic>Data integration</topic><topic>Degradation</topic><topic>Electric vehicles</topic><topic>Estimation</topic><topic>Gaussian process</topic><topic>Hidden Markov models</topic><topic>Li-ion battery</topic><topic>Life prediction</topic><topic>Lithium-ion batteries</topic><topic>metabolic gray model</topic><topic>model-data-fusion</topic><topic>multiple-output Gaussian process regression</topic><topic>particle filter (PF)</topic><topic>Predictive models</topic><topic>Rechargeable batteries</topic><topic>remaining useful life</topic><topic>state of health</topic><topic>Useful life</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Zhiqiang</creatorcontrib><creatorcontrib>Gao, Renjing</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lyu, Zhiqiang</au><au>Gao, Renjing</au><au>Chen, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li-Ion Battery State of Health Estimation and Remaining Useful Life Prediction Through a Model-Data-Fusion Method</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>36</volume><issue>6</issue><spage>6228</spage><epage>6240</epage><pages>6228-6240</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>The prognostics and health management of Li-ion batteries in electric vehicles are challenging due to the time-varying and nonlinear battery degradation. This article proposes a model-data-fusion method for battery state-of-health estimation and remaining useful life prediction. First, combined with metabolic gray model and multiple-output Gaussian process regression, a dynamic and data-driven battery degradation model is established to simulate battery complicated degradation behaviors, which takes the capacity degradation as the state variable and takes the internal resistance and polarization resistance from battery Thevenin model as the input variables. Second, to suppress the measurement noises of online battery information, a particle filter is utilized to track the battery capacity degradation for state-of-health estimation and extrapolate the degradation trajectory for remaining useful life prediction. Furthermore, battery ageing experiments are conducted to verify the proposed model-data-fusion method. The verification results show that the proposed method can provide an accurate and robustness state of health estimation and remaining useful life prediction at different temperatures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2020.3033297</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2976-347X</orcidid><orcidid>https://orcid.org/0000-0002-2211-4047</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2021-06, Vol.36 (6), p.6228-6240
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_9238444
source IEEE Electronic Library (IEL)
subjects Adaptation models
Aging
Batteries
Data integration
Degradation
Electric vehicles
Estimation
Gaussian process
Hidden Markov models
Li-ion battery
Life prediction
Lithium-ion batteries
metabolic gray model
model-data-fusion
multiple-output Gaussian process regression
particle filter (PF)
Predictive models
Rechargeable batteries
remaining useful life
state of health
Useful life
title Li-Ion Battery State of Health Estimation and Remaining Useful Life Prediction Through a Model-Data-Fusion Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li-Ion%20Battery%20State%20of%20Health%20Estimation%20and%20Remaining%20Useful%20Life%20Prediction%20Through%20a%20Model-Data-Fusion%20Method&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Lyu,%20Zhiqiang&rft.date=2021-06-01&rft.volume=36&rft.issue=6&rft.spage=6228&rft.epage=6240&rft.pages=6228-6240&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2020.3033297&rft_dat=%3Cproquest_RIE%3E2487438507%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487438507&rft_id=info:pmid/&rft_ieee_id=9238444&rfr_iscdi=true