Average leakage current estimation of CMOS logic circuits

In a product engineering environment there is a need to know quickly the average standby current of an IC for various combinations of power supply and temperature. We present two techniques to do this estimation without resorting to involved simulations. We use a bottom-up methodology that propagate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: de Gyvez, J.P., van der Wetering, E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue
container_start_page 375
container_title
container_volume
creator de Gyvez, J.P.
van der Wetering, E.
description In a product engineering environment there is a need to know quickly the average standby current of an IC for various combinations of power supply and temperature. We present two techniques to do this estimation without resorting to involved simulations. We use a bottom-up methodology that propagates the effect of process variations to higher levels of abstraction. In one approach, the leakage current of any given circuit is computed by adding up individual cell currents indexed from a statistically characterized library of standard cells. The second method is based on empirical formulae derived from results of the standard cell library characterization. In this approach the total leakage current is estimated without the need for any simulations and using only the circuit's equivalent cell-count. We present here the statistical foundation of our approach as well as experimental results on actual ICs.
doi_str_mv 10.1109/VTS.2001.923465
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_923465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>923465</ieee_id><sourcerecordid>923465</sourcerecordid><originalsourceid>FETCH-LOGICAL-i145t-41ecb1a42fa4ceef82d08350ab26cc7b00f6ace5fc30f653da050bce7629211b3</originalsourceid><addsrcrecordid>eNotj0tLw0AUhQdEUGrWBVfzBxLvnUeSWZbgCypdtHZbJrd3ymhsZJIK_nsj7dl8Z_VxjhBzhAIR3MN2sy4UABZOaVPaK5G5qoaqdBZRKbwR2TB8wBRjTaXsrXCLH07-wLJj__lPOqXEx1HyMMYvP8b-KPsgm7fVWnb9IZKkmOgUx-FOXAffDZxdOBPvT4-b5iVfrp5fm8Uyj2jsmBtkatEbFbwh5lCrPdTagm9VSVS1AKH0xDaQnprVew8WWuKqVE4htnom7s_eyMy77zStSr-78z_9B5OoRXQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Average leakage current estimation of CMOS logic circuits</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>de Gyvez, J.P. ; van der Wetering, E.</creator><creatorcontrib>de Gyvez, J.P. ; van der Wetering, E.</creatorcontrib><description>In a product engineering environment there is a need to know quickly the average standby current of an IC for various combinations of power supply and temperature. We present two techniques to do this estimation without resorting to involved simulations. We use a bottom-up methodology that propagates the effect of process variations to higher levels of abstraction. In one approach, the leakage current of any given circuit is computed by adding up individual cell currents indexed from a statistically characterized library of standard cells. The second method is based on empirical formulae derived from results of the standard cell library characterization. In this approach the total leakage current is estimated without the need for any simulations and using only the circuit's equivalent cell-count. We present here the statistical foundation of our approach as well as experimental results on actual ICs.</description><identifier>ISBN: 9780769511221</identifier><identifier>ISBN: 0769511228</identifier><identifier>DOI: 10.1109/VTS.2001.923465</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit simulation ; Circuit testing ; CMOS logic circuits ; Computational modeling ; Emergency power supplies ; Leakage current ; Libraries ; Power engineering and energy ; Switches ; Temperature</subject><ispartof>Proceedings 19th IEEE VLSI Test Symposium. VTS 2001, 2001, p.375-379</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/923465$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/923465$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Gyvez, J.P.</creatorcontrib><creatorcontrib>van der Wetering, E.</creatorcontrib><title>Average leakage current estimation of CMOS logic circuits</title><title>Proceedings 19th IEEE VLSI Test Symposium. VTS 2001</title><addtitle>VTS</addtitle><description>In a product engineering environment there is a need to know quickly the average standby current of an IC for various combinations of power supply and temperature. We present two techniques to do this estimation without resorting to involved simulations. We use a bottom-up methodology that propagates the effect of process variations to higher levels of abstraction. In one approach, the leakage current of any given circuit is computed by adding up individual cell currents indexed from a statistically characterized library of standard cells. The second method is based on empirical formulae derived from results of the standard cell library characterization. In this approach the total leakage current is estimated without the need for any simulations and using only the circuit's equivalent cell-count. We present here the statistical foundation of our approach as well as experimental results on actual ICs.</description><subject>Circuit simulation</subject><subject>Circuit testing</subject><subject>CMOS logic circuits</subject><subject>Computational modeling</subject><subject>Emergency power supplies</subject><subject>Leakage current</subject><subject>Libraries</subject><subject>Power engineering and energy</subject><subject>Switches</subject><subject>Temperature</subject><isbn>9780769511221</isbn><isbn>0769511228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLw0AUhQdEUGrWBVfzBxLvnUeSWZbgCypdtHZbJrd3ymhsZJIK_nsj7dl8Z_VxjhBzhAIR3MN2sy4UABZOaVPaK5G5qoaqdBZRKbwR2TB8wBRjTaXsrXCLH07-wLJj__lPOqXEx1HyMMYvP8b-KPsgm7fVWnb9IZKkmOgUx-FOXAffDZxdOBPvT4-b5iVfrp5fm8Uyj2jsmBtkatEbFbwh5lCrPdTagm9VSVS1AKH0xDaQnprVew8WWuKqVE4htnom7s_eyMy77zStSr-78z_9B5OoRXQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>de Gyvez, J.P.</creator><creator>van der Wetering, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2001</creationdate><title>Average leakage current estimation of CMOS logic circuits</title><author>de Gyvez, J.P. ; van der Wetering, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i145t-41ecb1a42fa4ceef82d08350ab26cc7b00f6ace5fc30f653da050bce7629211b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Circuit simulation</topic><topic>Circuit testing</topic><topic>CMOS logic circuits</topic><topic>Computational modeling</topic><topic>Emergency power supplies</topic><topic>Leakage current</topic><topic>Libraries</topic><topic>Power engineering and energy</topic><topic>Switches</topic><topic>Temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>de Gyvez, J.P.</creatorcontrib><creatorcontrib>van der Wetering, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Gyvez, J.P.</au><au>van der Wetering, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Average leakage current estimation of CMOS logic circuits</atitle><btitle>Proceedings 19th IEEE VLSI Test Symposium. VTS 2001</btitle><stitle>VTS</stitle><date>2001</date><risdate>2001</risdate><spage>375</spage><epage>379</epage><pages>375-379</pages><isbn>9780769511221</isbn><isbn>0769511228</isbn><abstract>In a product engineering environment there is a need to know quickly the average standby current of an IC for various combinations of power supply and temperature. We present two techniques to do this estimation without resorting to involved simulations. We use a bottom-up methodology that propagates the effect of process variations to higher levels of abstraction. In one approach, the leakage current of any given circuit is computed by adding up individual cell currents indexed from a statistically characterized library of standard cells. The second method is based on empirical formulae derived from results of the standard cell library characterization. In this approach the total leakage current is estimated without the need for any simulations and using only the circuit's equivalent cell-count. We present here the statistical foundation of our approach as well as experimental results on actual ICs.</abstract><pub>IEEE</pub><doi>10.1109/VTS.2001.923465</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769511221
ispartof Proceedings 19th IEEE VLSI Test Symposium. VTS 2001, 2001, p.375-379
issn
language eng
recordid cdi_ieee_primary_923465
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Circuit simulation
Circuit testing
CMOS logic circuits
Computational modeling
Emergency power supplies
Leakage current
Libraries
Power engineering and energy
Switches
Temperature
title Average leakage current estimation of CMOS logic circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Average%20leakage%20current%20estimation%20of%20CMOS%20logic%20circuits&rft.btitle=Proceedings%2019th%20IEEE%20VLSI%20Test%20Symposium.%20VTS%202001&rft.au=de%20Gyvez,%20J.P.&rft.date=2001&rft.spage=375&rft.epage=379&rft.pages=375-379&rft.isbn=9780769511221&rft.isbn_list=0769511228&rft_id=info:doi/10.1109/VTS.2001.923465&rft_dat=%3Cieee_6IE%3E923465%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=923465&rfr_iscdi=true