Low Latency Demodulation for High-Frequency Atomic Force Microscopy Probes
One prerequisite for high-speed imaging in dynamic-mode atomic force microscopy (AFM) is the fast demodulation of the probe signal. In this contribution, we present the amplitude and phase estimation method based on the acquisition of four points per oscillation, with the sampling frequency being ph...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2021-09, Vol.29 (5), p.2264-2270 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2270 |
---|---|
container_issue | 5 |
container_start_page | 2264 |
container_title | IEEE transactions on control systems technology |
container_volume | 29 |
creator | Lagrange, Denis Mauran, Nicolas Schwab, Lucien Legrand, Bernard |
description | One prerequisite for high-speed imaging in dynamic-mode atomic force microscopy (AFM) is the fast demodulation of the probe signal. In this contribution, we present the amplitude and phase estimation method based on the acquisition of four points per oscillation, with the sampling frequency being phase-locked on the probe actuation. The method is implemented on a RedPitaya platform, with its clock being generated from the actuation signal of the probe. Experimental characterizations using square-modulated sine waves show that latency of 500 ns is achieved with a carrier frequency of 10 MHz, which is ten times faster compared with a state-of-the-art lock-in amplifier. A tracking bandwidth greater than 200 kHz is obtained experimentally. The method is eventually applied to a close-loop AFM scan realized using a 15-MHz AFM probe, showing its suitability for high-frequency oscillating probes. |
doi_str_mv | 10.1109/TCST.2020.3028737 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9229238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9229238</ieee_id><sourcerecordid>2558823931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-5c5111e8af870d14c13169e3946f41c9394f3e850b43976cb2affdaa1ac759903</originalsourceid><addsrcrecordid>eNo9kMFOwzAMQCMEEmPwAYhLJU4cOuykaZLjNBgDFYHEOEdZlrBO2zLSDrS_p6XTTrbsZ8t-hFwjDBBB3U9HH9MBBQoDBlQKJk5IDzmXKcicnzY55CzNOcvPyUVVLQEw41T0yEsRfpPC1G5j98mDW4f5bmXqMmwSH2IyKb8W6Ti6791_f1iHdWmTcYjWJa-ljaGyYbtP3mOYueqSnHmzqtzVIfbJ5_hxOpqkxdvT82hYpJYJqFNuOSI6abwUMMfMIsNcOaay3GdoVZN45iSHWcaUyO2MGu_nxqCxgisFrE_uur0Ls9LbWK5N3OtgSj0ZFrqtAVUiQ44_2LC3HbuNoXmiqvUy7OKmOU_Txo6kTLGWwo5qP6qi88e1CLrVq1u9utWrD3qbmZtupnTOHXlFqaJMsj_Z2nRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558823931</pqid></control><display><type>article</type><title>Low Latency Demodulation for High-Frequency Atomic Force Microscopy Probes</title><source>IEEE Electronic Library (IEL)</source><creator>Lagrange, Denis ; Mauran, Nicolas ; Schwab, Lucien ; Legrand, Bernard</creator><creatorcontrib>Lagrange, Denis ; Mauran, Nicolas ; Schwab, Lucien ; Legrand, Bernard</creatorcontrib><description>One prerequisite for high-speed imaging in dynamic-mode atomic force microscopy (AFM) is the fast demodulation of the probe signal. In this contribution, we present the amplitude and phase estimation method based on the acquisition of four points per oscillation, with the sampling frequency being phase-locked on the probe actuation. The method is implemented on a RedPitaya platform, with its clock being generated from the actuation signal of the probe. Experimental characterizations using square-modulated sine waves show that latency of 500 ns is achieved with a carrier frequency of 10 MHz, which is ten times faster compared with a state-of-the-art lock-in amplifier. A tracking bandwidth greater than 200 kHz is obtained experimentally. The method is eventually applied to a close-loop AFM scan realized using a 15-MHz AFM probe, showing its suitability for high-frequency oscillating probes.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2020.3028737</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuation ; Amplitude and phase demodulation ; Atomic force microscopy ; atomic force microscopy (AFM) ; Bandwidth ; Carrier frequencies ; Demodulation ; Electronics ; Engineering Sciences ; Field programmable gate arrays ; field-programmable gate array~(FPGA) implementation ; Lock in amplifiers ; Micro and nanotechnologies ; Microelectronics ; Microscopes ; Microscopy ; Signal and Image processing ; Sine waves</subject><ispartof>IEEE transactions on control systems technology, 2021-09, Vol.29 (5), p.2264-2270</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-5c5111e8af870d14c13169e3946f41c9394f3e850b43976cb2affdaa1ac759903</citedby><cites>FETCH-LOGICAL-c370t-5c5111e8af870d14c13169e3946f41c9394f3e850b43976cb2affdaa1ac759903</cites><orcidid>0000-0001-5158-3654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9229238$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9229238$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://laas.hal.science/hal-02974151$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lagrange, Denis</creatorcontrib><creatorcontrib>Mauran, Nicolas</creatorcontrib><creatorcontrib>Schwab, Lucien</creatorcontrib><creatorcontrib>Legrand, Bernard</creatorcontrib><title>Low Latency Demodulation for High-Frequency Atomic Force Microscopy Probes</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>One prerequisite for high-speed imaging in dynamic-mode atomic force microscopy (AFM) is the fast demodulation of the probe signal. In this contribution, we present the amplitude and phase estimation method based on the acquisition of four points per oscillation, with the sampling frequency being phase-locked on the probe actuation. The method is implemented on a RedPitaya platform, with its clock being generated from the actuation signal of the probe. Experimental characterizations using square-modulated sine waves show that latency of 500 ns is achieved with a carrier frequency of 10 MHz, which is ten times faster compared with a state-of-the-art lock-in amplifier. A tracking bandwidth greater than 200 kHz is obtained experimentally. The method is eventually applied to a close-loop AFM scan realized using a 15-MHz AFM probe, showing its suitability for high-frequency oscillating probes.</description><subject>Actuation</subject><subject>Amplitude and phase demodulation</subject><subject>Atomic force microscopy</subject><subject>atomic force microscopy (AFM)</subject><subject>Bandwidth</subject><subject>Carrier frequencies</subject><subject>Demodulation</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Field programmable gate arrays</subject><subject>field-programmable gate array~(FPGA) implementation</subject><subject>Lock in amplifiers</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Signal and Image processing</subject><subject>Sine waves</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAMQCMEEmPwAYhLJU4cOuykaZLjNBgDFYHEOEdZlrBO2zLSDrS_p6XTTrbsZ8t-hFwjDBBB3U9HH9MBBQoDBlQKJk5IDzmXKcicnzY55CzNOcvPyUVVLQEw41T0yEsRfpPC1G5j98mDW4f5bmXqMmwSH2IyKb8W6Ti6791_f1iHdWmTcYjWJa-ljaGyYbtP3mOYueqSnHmzqtzVIfbJ5_hxOpqkxdvT82hYpJYJqFNuOSI6abwUMMfMIsNcOaay3GdoVZN45iSHWcaUyO2MGu_nxqCxgisFrE_uur0Ls9LbWK5N3OtgSj0ZFrqtAVUiQ44_2LC3HbuNoXmiqvUy7OKmOU_Txo6kTLGWwo5qP6qi88e1CLrVq1u9utWrD3qbmZtupnTOHXlFqaJMsj_Z2nRQ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Lagrange, Denis</creator><creator>Mauran, Nicolas</creator><creator>Schwab, Lucien</creator><creator>Legrand, Bernard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5158-3654</orcidid></search><sort><creationdate>202109</creationdate><title>Low Latency Demodulation for High-Frequency Atomic Force Microscopy Probes</title><author>Lagrange, Denis ; Mauran, Nicolas ; Schwab, Lucien ; Legrand, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-5c5111e8af870d14c13169e3946f41c9394f3e850b43976cb2affdaa1ac759903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuation</topic><topic>Amplitude and phase demodulation</topic><topic>Atomic force microscopy</topic><topic>atomic force microscopy (AFM)</topic><topic>Bandwidth</topic><topic>Carrier frequencies</topic><topic>Demodulation</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Field programmable gate arrays</topic><topic>field-programmable gate array~(FPGA) implementation</topic><topic>Lock in amplifiers</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Signal and Image processing</topic><topic>Sine waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lagrange, Denis</creatorcontrib><creatorcontrib>Mauran, Nicolas</creatorcontrib><creatorcontrib>Schwab, Lucien</creatorcontrib><creatorcontrib>Legrand, Bernard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lagrange, Denis</au><au>Mauran, Nicolas</au><au>Schwab, Lucien</au><au>Legrand, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Latency Demodulation for High-Frequency Atomic Force Microscopy Probes</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2021-09</date><risdate>2021</risdate><volume>29</volume><issue>5</issue><spage>2264</spage><epage>2270</epage><pages>2264-2270</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>One prerequisite for high-speed imaging in dynamic-mode atomic force microscopy (AFM) is the fast demodulation of the probe signal. In this contribution, we present the amplitude and phase estimation method based on the acquisition of four points per oscillation, with the sampling frequency being phase-locked on the probe actuation. The method is implemented on a RedPitaya platform, with its clock being generated from the actuation signal of the probe. Experimental characterizations using square-modulated sine waves show that latency of 500 ns is achieved with a carrier frequency of 10 MHz, which is ten times faster compared with a state-of-the-art lock-in amplifier. A tracking bandwidth greater than 200 kHz is obtained experimentally. The method is eventually applied to a close-loop AFM scan realized using a 15-MHz AFM probe, showing its suitability for high-frequency oscillating probes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2020.3028737</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5158-3654</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2021-09, Vol.29 (5), p.2264-2270 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_ieee_primary_9229238 |
source | IEEE Electronic Library (IEL) |
subjects | Actuation Amplitude and phase demodulation Atomic force microscopy atomic force microscopy (AFM) Bandwidth Carrier frequencies Demodulation Electronics Engineering Sciences Field programmable gate arrays field-programmable gate array~(FPGA) implementation Lock in amplifiers Micro and nanotechnologies Microelectronics Microscopes Microscopy Signal and Image processing Sine waves |
title | Low Latency Demodulation for High-Frequency Atomic Force Microscopy Probes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Latency%20Demodulation%20for%20High-Frequency%20Atomic%20Force%20Microscopy%20Probes&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Lagrange,%20Denis&rft.date=2021-09&rft.volume=29&rft.issue=5&rft.spage=2264&rft.epage=2270&rft.pages=2264-2270&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2020.3028737&rft_dat=%3Cproquest_RIE%3E2558823931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558823931&rft_id=info:pmid/&rft_ieee_id=9229238&rfr_iscdi=true |