Improving Automated Sonar Video Analysis to Notify About Jellyfish Blooms
Human enterprise often suffers from direct negative effects caused by jellyfish blooms. The investigation of a prior jellyfish monitoring system showed that it was unable to reliably perform in a cross validation setting, i.e. in new underwater environments. In this paper, a number of enhancements a...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-02, Vol.21 (4), p.4981-4988 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4988 |
---|---|
container_issue | 4 |
container_start_page | 4981 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Gorpincenko, Artjoms French, Geoffrey Knight, Peter Challiss, Mike Mackiewicz, Michal |
description | Human enterprise often suffers from direct negative effects caused by jellyfish blooms. The investigation of a prior jellyfish monitoring system showed that it was unable to reliably perform in a cross validation setting, i.e. in new underwater environments. In this paper, a number of enhancements are proposed to the part of the system that is responsible for object classification. First, the training set is augmented by adding synthetic data, making the deep learning classifier able to generalise better. Then, the framework is enhanced by employing a new second stage model, which analyzes the outputs of the first network to make the final prediction. Finally, weighted loss and confidence threshold are added to balance out true and false positives. With all the upgrades in place, the system can correctly classify 30.16% (comparing to the initial 11.52%) of all spotted jellyfish, keep the amount of false positives as low as 0.91% (comparing to the initial 2.26%) and operate in real-time within the computational constraints of an autonomous embedded platform. |
doi_str_mv | 10.1109/JSEN.2020.3032031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9229203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9229203</ieee_id><sourcerecordid>2479886789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-750366b2189e7c3d20ce8a1122a66e2dcbd1275ab18f695b5ffe7a0c30a7bf843</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZJLuuYujHmxVS8C2mbaEa7zCYV-u9t2fDqHDjPe3h5ALjFaIYxkg-r7WIzI4igGUWUIIrPwAQzJhLMU3E-7hQlKeWfl-AqhB1CWHLGJ2C5bA6t_3X7L5h30Tc6mgpu_V638MNVxsN8r-s-uACjhxsfne1hXvguwpWp69668A0fa--bcA0urK6DuTnNKXh_WrzNX5L16_Nynq-TkkgaE84QzbKCYCENL2lFUGmExpgQnWWGVGVRYcKZLrCwmWQFs9ZwjUqKNC-sSOkU3B__Dr1_OhOi2vmuHVoGRVIuhci4kAOFj1TZ-hBaY9WhdY1ue4WRGo2p0ZgajamTsSFzd8w4Y8w_LwmRw5n-AcO9Zu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479886789</pqid></control><display><type>article</type><title>Improving Automated Sonar Video Analysis to Notify About Jellyfish Blooms</title><source>IEEE Electronic Library (IEL)</source><creator>Gorpincenko, Artjoms ; French, Geoffrey ; Knight, Peter ; Challiss, Mike ; Mackiewicz, Michal</creator><creatorcontrib>Gorpincenko, Artjoms ; French, Geoffrey ; Knight, Peter ; Challiss, Mike ; Mackiewicz, Michal</creatorcontrib><description>Human enterprise often suffers from direct negative effects caused by jellyfish blooms. The investigation of a prior jellyfish monitoring system showed that it was unable to reliably perform in a cross validation setting, i.e. in new underwater environments. In this paper, a number of enhancements are proposed to the part of the system that is responsible for object classification. First, the training set is augmented by adding synthetic data, making the deep learning classifier able to generalise better. Then, the framework is enhanced by employing a new second stage model, which analyzes the outputs of the first network to make the final prediction. Finally, weighted loss and confidence threshold are added to balance out true and false positives. With all the upgrades in place, the system can correctly classify 30.16% (comparing to the initial 11.52%) of all spotted jellyfish, keep the amount of false positives as low as 0.91% (comparing to the initial 2.26%) and operate in real-time within the computational constraints of an autonomous embedded platform.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3032031</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Deep learning ; Generators ; jellyfish quantification ; Machine learning ; object classification ; Sea measurements ; Sensors ; Sonar ; sonar imagery ; Testing ; Training ; underwater monitoring</subject><ispartof>IEEE sensors journal, 2021-02, Vol.21 (4), p.4981-4988</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-750366b2189e7c3d20ce8a1122a66e2dcbd1275ab18f695b5ffe7a0c30a7bf843</citedby><cites>FETCH-LOGICAL-c293t-750366b2189e7c3d20ce8a1122a66e2dcbd1275ab18f695b5ffe7a0c30a7bf843</cites><orcidid>0000-0001-8492-745X ; 0000-0001-7853-8458 ; 0000-0002-8777-8880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9229203$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9229203$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gorpincenko, Artjoms</creatorcontrib><creatorcontrib>French, Geoffrey</creatorcontrib><creatorcontrib>Knight, Peter</creatorcontrib><creatorcontrib>Challiss, Mike</creatorcontrib><creatorcontrib>Mackiewicz, Michal</creatorcontrib><title>Improving Automated Sonar Video Analysis to Notify About Jellyfish Blooms</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Human enterprise often suffers from direct negative effects caused by jellyfish blooms. The investigation of a prior jellyfish monitoring system showed that it was unable to reliably perform in a cross validation setting, i.e. in new underwater environments. In this paper, a number of enhancements are proposed to the part of the system that is responsible for object classification. First, the training set is augmented by adding synthetic data, making the deep learning classifier able to generalise better. Then, the framework is enhanced by employing a new second stage model, which analyzes the outputs of the first network to make the final prediction. Finally, weighted loss and confidence threshold are added to balance out true and false positives. With all the upgrades in place, the system can correctly classify 30.16% (comparing to the initial 11.52%) of all spotted jellyfish, keep the amount of false positives as low as 0.91% (comparing to the initial 2.26%) and operate in real-time within the computational constraints of an autonomous embedded platform.</description><subject>Deep learning</subject><subject>Generators</subject><subject>jellyfish quantification</subject><subject>Machine learning</subject><subject>object classification</subject><subject>Sea measurements</subject><subject>Sensors</subject><subject>Sonar</subject><subject>sonar imagery</subject><subject>Testing</subject><subject>Training</subject><subject>underwater monitoring</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZJLuuYujHmxVS8C2mbaEa7zCYV-u9t2fDqHDjPe3h5ALjFaIYxkg-r7WIzI4igGUWUIIrPwAQzJhLMU3E-7hQlKeWfl-AqhB1CWHLGJ2C5bA6t_3X7L5h30Tc6mgpu_V638MNVxsN8r-s-uACjhxsfne1hXvguwpWp69668A0fa--bcA0urK6DuTnNKXh_WrzNX5L16_Nynq-TkkgaE84QzbKCYCENL2lFUGmExpgQnWWGVGVRYcKZLrCwmWQFs9ZwjUqKNC-sSOkU3B__Dr1_OhOi2vmuHVoGRVIuhci4kAOFj1TZ-hBaY9WhdY1ue4WRGo2p0ZgajamTsSFzd8w4Y8w_LwmRw5n-AcO9Zu4</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Gorpincenko, Artjoms</creator><creator>French, Geoffrey</creator><creator>Knight, Peter</creator><creator>Challiss, Mike</creator><creator>Mackiewicz, Michal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8492-745X</orcidid><orcidid>https://orcid.org/0000-0001-7853-8458</orcidid><orcidid>https://orcid.org/0000-0002-8777-8880</orcidid></search><sort><creationdate>20210215</creationdate><title>Improving Automated Sonar Video Analysis to Notify About Jellyfish Blooms</title><author>Gorpincenko, Artjoms ; French, Geoffrey ; Knight, Peter ; Challiss, Mike ; Mackiewicz, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-750366b2189e7c3d20ce8a1122a66e2dcbd1275ab18f695b5ffe7a0c30a7bf843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep learning</topic><topic>Generators</topic><topic>jellyfish quantification</topic><topic>Machine learning</topic><topic>object classification</topic><topic>Sea measurements</topic><topic>Sensors</topic><topic>Sonar</topic><topic>sonar imagery</topic><topic>Testing</topic><topic>Training</topic><topic>underwater monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorpincenko, Artjoms</creatorcontrib><creatorcontrib>French, Geoffrey</creatorcontrib><creatorcontrib>Knight, Peter</creatorcontrib><creatorcontrib>Challiss, Mike</creatorcontrib><creatorcontrib>Mackiewicz, Michal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gorpincenko, Artjoms</au><au>French, Geoffrey</au><au>Knight, Peter</au><au>Challiss, Mike</au><au>Mackiewicz, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Automated Sonar Video Analysis to Notify About Jellyfish Blooms</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-02-15</date><risdate>2021</risdate><volume>21</volume><issue>4</issue><spage>4981</spage><epage>4988</epage><pages>4981-4988</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Human enterprise often suffers from direct negative effects caused by jellyfish blooms. The investigation of a prior jellyfish monitoring system showed that it was unable to reliably perform in a cross validation setting, i.e. in new underwater environments. In this paper, a number of enhancements are proposed to the part of the system that is responsible for object classification. First, the training set is augmented by adding synthetic data, making the deep learning classifier able to generalise better. Then, the framework is enhanced by employing a new second stage model, which analyzes the outputs of the first network to make the final prediction. Finally, weighted loss and confidence threshold are added to balance out true and false positives. With all the upgrades in place, the system can correctly classify 30.16% (comparing to the initial 11.52%) of all spotted jellyfish, keep the amount of false positives as low as 0.91% (comparing to the initial 2.26%) and operate in real-time within the computational constraints of an autonomous embedded platform.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3032031</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8492-745X</orcidid><orcidid>https://orcid.org/0000-0001-7853-8458</orcidid><orcidid>https://orcid.org/0000-0002-8777-8880</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-02, Vol.21 (4), p.4981-4988 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9229203 |
source | IEEE Electronic Library (IEL) |
subjects | Deep learning Generators jellyfish quantification Machine learning object classification Sea measurements Sensors Sonar sonar imagery Testing Training underwater monitoring |
title | Improving Automated Sonar Video Analysis to Notify About Jellyfish Blooms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Automated%20Sonar%20Video%20Analysis%20to%20Notify%20About%20Jellyfish%20Blooms&rft.jtitle=IEEE%20sensors%20journal&rft.au=Gorpincenko,%20Artjoms&rft.date=2021-02-15&rft.volume=21&rft.issue=4&rft.spage=4981&rft.epage=4988&rft.pages=4981-4988&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3032031&rft_dat=%3Cproquest_RIE%3E2479886789%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479886789&rft_id=info:pmid/&rft_ieee_id=9229203&rfr_iscdi=true |