Improving Automated Sonar Video Analysis to Notify About Jellyfish Blooms

Human enterprise often suffers from direct negative effects caused by jellyfish blooms. The investigation of a prior jellyfish monitoring system showed that it was unable to reliably perform in a cross validation setting, i.e. in new underwater environments. In this paper, a number of enhancements a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-02, Vol.21 (4), p.4981-4988
Hauptverfasser: Gorpincenko, Artjoms, French, Geoffrey, Knight, Peter, Challiss, Mike, Mackiewicz, Michal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4988
container_issue 4
container_start_page 4981
container_title IEEE sensors journal
container_volume 21
creator Gorpincenko, Artjoms
French, Geoffrey
Knight, Peter
Challiss, Mike
Mackiewicz, Michal
description Human enterprise often suffers from direct negative effects caused by jellyfish blooms. The investigation of a prior jellyfish monitoring system showed that it was unable to reliably perform in a cross validation setting, i.e. in new underwater environments. In this paper, a number of enhancements are proposed to the part of the system that is responsible for object classification. First, the training set is augmented by adding synthetic data, making the deep learning classifier able to generalise better. Then, the framework is enhanced by employing a new second stage model, which analyzes the outputs of the first network to make the final prediction. Finally, weighted loss and confidence threshold are added to balance out true and false positives. With all the upgrades in place, the system can correctly classify 30.16% (comparing to the initial 11.52%) of all spotted jellyfish, keep the amount of false positives as low as 0.91% (comparing to the initial 2.26%) and operate in real-time within the computational constraints of an autonomous embedded platform.
doi_str_mv 10.1109/JSEN.2020.3032031
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9229203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9229203</ieee_id><sourcerecordid>2479886789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-750366b2189e7c3d20ce8a1122a66e2dcbd1275ab18f695b5ffe7a0c30a7bf843</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZJLuuYujHmxVS8C2mbaEa7zCYV-u9t2fDqHDjPe3h5ALjFaIYxkg-r7WIzI4igGUWUIIrPwAQzJhLMU3E-7hQlKeWfl-AqhB1CWHLGJ2C5bA6t_3X7L5h30Tc6mgpu_V638MNVxsN8r-s-uACjhxsfne1hXvguwpWp69668A0fa--bcA0urK6DuTnNKXh_WrzNX5L16_Nynq-TkkgaE84QzbKCYCENL2lFUGmExpgQnWWGVGVRYcKZLrCwmWQFs9ZwjUqKNC-sSOkU3B__Dr1_OhOi2vmuHVoGRVIuhci4kAOFj1TZ-hBaY9WhdY1ue4WRGo2p0ZgajamTsSFzd8w4Y8w_LwmRw5n-AcO9Zu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479886789</pqid></control><display><type>article</type><title>Improving Automated Sonar Video Analysis to Notify About Jellyfish Blooms</title><source>IEEE Electronic Library (IEL)</source><creator>Gorpincenko, Artjoms ; French, Geoffrey ; Knight, Peter ; Challiss, Mike ; Mackiewicz, Michal</creator><creatorcontrib>Gorpincenko, Artjoms ; French, Geoffrey ; Knight, Peter ; Challiss, Mike ; Mackiewicz, Michal</creatorcontrib><description>Human enterprise often suffers from direct negative effects caused by jellyfish blooms. The investigation of a prior jellyfish monitoring system showed that it was unable to reliably perform in a cross validation setting, i.e. in new underwater environments. In this paper, a number of enhancements are proposed to the part of the system that is responsible for object classification. First, the training set is augmented by adding synthetic data, making the deep learning classifier able to generalise better. Then, the framework is enhanced by employing a new second stage model, which analyzes the outputs of the first network to make the final prediction. Finally, weighted loss and confidence threshold are added to balance out true and false positives. With all the upgrades in place, the system can correctly classify 30.16% (comparing to the initial 11.52%) of all spotted jellyfish, keep the amount of false positives as low as 0.91% (comparing to the initial 2.26%) and operate in real-time within the computational constraints of an autonomous embedded platform.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3032031</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Deep learning ; Generators ; jellyfish quantification ; Machine learning ; object classification ; Sea measurements ; Sensors ; Sonar ; sonar imagery ; Testing ; Training ; underwater monitoring</subject><ispartof>IEEE sensors journal, 2021-02, Vol.21 (4), p.4981-4988</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-750366b2189e7c3d20ce8a1122a66e2dcbd1275ab18f695b5ffe7a0c30a7bf843</citedby><cites>FETCH-LOGICAL-c293t-750366b2189e7c3d20ce8a1122a66e2dcbd1275ab18f695b5ffe7a0c30a7bf843</cites><orcidid>0000-0001-8492-745X ; 0000-0001-7853-8458 ; 0000-0002-8777-8880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9229203$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9229203$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gorpincenko, Artjoms</creatorcontrib><creatorcontrib>French, Geoffrey</creatorcontrib><creatorcontrib>Knight, Peter</creatorcontrib><creatorcontrib>Challiss, Mike</creatorcontrib><creatorcontrib>Mackiewicz, Michal</creatorcontrib><title>Improving Automated Sonar Video Analysis to Notify About Jellyfish Blooms</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Human enterprise often suffers from direct negative effects caused by jellyfish blooms. The investigation of a prior jellyfish monitoring system showed that it was unable to reliably perform in a cross validation setting, i.e. in new underwater environments. In this paper, a number of enhancements are proposed to the part of the system that is responsible for object classification. First, the training set is augmented by adding synthetic data, making the deep learning classifier able to generalise better. Then, the framework is enhanced by employing a new second stage model, which analyzes the outputs of the first network to make the final prediction. Finally, weighted loss and confidence threshold are added to balance out true and false positives. With all the upgrades in place, the system can correctly classify 30.16% (comparing to the initial 11.52%) of all spotted jellyfish, keep the amount of false positives as low as 0.91% (comparing to the initial 2.26%) and operate in real-time within the computational constraints of an autonomous embedded platform.</description><subject>Deep learning</subject><subject>Generators</subject><subject>jellyfish quantification</subject><subject>Machine learning</subject><subject>object classification</subject><subject>Sea measurements</subject><subject>Sensors</subject><subject>Sonar</subject><subject>sonar imagery</subject><subject>Testing</subject><subject>Training</subject><subject>underwater monitoring</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZJLuuYujHmxVS8C2mbaEa7zCYV-u9t2fDqHDjPe3h5ALjFaIYxkg-r7WIzI4igGUWUIIrPwAQzJhLMU3E-7hQlKeWfl-AqhB1CWHLGJ2C5bA6t_3X7L5h30Tc6mgpu_V638MNVxsN8r-s-uACjhxsfne1hXvguwpWp69668A0fa--bcA0urK6DuTnNKXh_WrzNX5L16_Nynq-TkkgaE84QzbKCYCENL2lFUGmExpgQnWWGVGVRYcKZLrCwmWQFs9ZwjUqKNC-sSOkU3B__Dr1_OhOi2vmuHVoGRVIuhci4kAOFj1TZ-hBaY9WhdY1ue4WRGo2p0ZgajamTsSFzd8w4Y8w_LwmRw5n-AcO9Zu4</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Gorpincenko, Artjoms</creator><creator>French, Geoffrey</creator><creator>Knight, Peter</creator><creator>Challiss, Mike</creator><creator>Mackiewicz, Michal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8492-745X</orcidid><orcidid>https://orcid.org/0000-0001-7853-8458</orcidid><orcidid>https://orcid.org/0000-0002-8777-8880</orcidid></search><sort><creationdate>20210215</creationdate><title>Improving Automated Sonar Video Analysis to Notify About Jellyfish Blooms</title><author>Gorpincenko, Artjoms ; French, Geoffrey ; Knight, Peter ; Challiss, Mike ; Mackiewicz, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-750366b2189e7c3d20ce8a1122a66e2dcbd1275ab18f695b5ffe7a0c30a7bf843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep learning</topic><topic>Generators</topic><topic>jellyfish quantification</topic><topic>Machine learning</topic><topic>object classification</topic><topic>Sea measurements</topic><topic>Sensors</topic><topic>Sonar</topic><topic>sonar imagery</topic><topic>Testing</topic><topic>Training</topic><topic>underwater monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorpincenko, Artjoms</creatorcontrib><creatorcontrib>French, Geoffrey</creatorcontrib><creatorcontrib>Knight, Peter</creatorcontrib><creatorcontrib>Challiss, Mike</creatorcontrib><creatorcontrib>Mackiewicz, Michal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gorpincenko, Artjoms</au><au>French, Geoffrey</au><au>Knight, Peter</au><au>Challiss, Mike</au><au>Mackiewicz, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Automated Sonar Video Analysis to Notify About Jellyfish Blooms</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-02-15</date><risdate>2021</risdate><volume>21</volume><issue>4</issue><spage>4981</spage><epage>4988</epage><pages>4981-4988</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Human enterprise often suffers from direct negative effects caused by jellyfish blooms. The investigation of a prior jellyfish monitoring system showed that it was unable to reliably perform in a cross validation setting, i.e. in new underwater environments. In this paper, a number of enhancements are proposed to the part of the system that is responsible for object classification. First, the training set is augmented by adding synthetic data, making the deep learning classifier able to generalise better. Then, the framework is enhanced by employing a new second stage model, which analyzes the outputs of the first network to make the final prediction. Finally, weighted loss and confidence threshold are added to balance out true and false positives. With all the upgrades in place, the system can correctly classify 30.16% (comparing to the initial 11.52%) of all spotted jellyfish, keep the amount of false positives as low as 0.91% (comparing to the initial 2.26%) and operate in real-time within the computational constraints of an autonomous embedded platform.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3032031</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8492-745X</orcidid><orcidid>https://orcid.org/0000-0001-7853-8458</orcidid><orcidid>https://orcid.org/0000-0002-8777-8880</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-02, Vol.21 (4), p.4981-4988
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9229203
source IEEE Electronic Library (IEL)
subjects Deep learning
Generators
jellyfish quantification
Machine learning
object classification
Sea measurements
Sensors
Sonar
sonar imagery
Testing
Training
underwater monitoring
title Improving Automated Sonar Video Analysis to Notify About Jellyfish Blooms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Automated%20Sonar%20Video%20Analysis%20to%20Notify%20About%20Jellyfish%20Blooms&rft.jtitle=IEEE%20sensors%20journal&rft.au=Gorpincenko,%20Artjoms&rft.date=2021-02-15&rft.volume=21&rft.issue=4&rft.spage=4981&rft.epage=4988&rft.pages=4981-4988&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3032031&rft_dat=%3Cproquest_RIE%3E2479886789%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479886789&rft_id=info:pmid/&rft_ieee_id=9229203&rfr_iscdi=true